Geometry of holomorphic isometric embeddings between bounded symmetric domains and applications

Shan-Tai Chan
Institute of Mathematics
Academy of Mathematics and Systems Science
Chinese Academy of Sciences

September 5, 2023

Lecture 2
2023 Morningside Center of Mathematics Geometry Summer School

Content

1. Asymptotic behaviour of local holomorphic curves
2. Applications and some related known results

These materials are based on my joint work with N. Mok (J. Differential Geom. 2022).

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \in \mathbb{C}^{N}$ be a bounded symmetric domain (BSD) equipped with the Bergman metric ds s_{Ω}^{2}. Let $\mu: U:=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in $\left(\Omega, d s_{\Omega}^{2}\right)$ at $z=\mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

$$
\lim _{w \in U \cap \Delta, w \rightarrow b}\|\sigma(\mu(w))\|=0
$$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$.

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain (BSD) equipped with the Bergman metric ds s_{Ω}^{2}. Let $\mu: U:=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in $\left(\Omega, d s_{\Omega}^{2}\right)$ at $z=\mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

$$
\lim _{w \in U \cap \Delta, w \rightarrow b}\|\sigma(\mu(w))\|=0
$$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$. For the last statement we say for short that μ is asymptotically totally geodesic at a general point $b \in \partial \Delta$. Moreover, we have not obtained a precise estimate on $\|\sigma(\mu(w))\|$.

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain (BSD) equipped with the Bergman metric $d s_{\Omega}^{2}$. Let $\mu: U:=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in $\left(\Omega, d s_{\Omega}^{2}\right)$ at $z=\mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

$$
\lim _{w \in U \cap \Delta, w \rightarrow b}\|\sigma(\mu(w))\|=0
$$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$. For the last statement we say for short that μ is asymptotically totally geodesic at a general point $b \in \partial \Delta$. Moreover, we have not obtained a precise estimate on $\|\sigma(\mu(w))\|$. However, this theorem was obtained by N. Mok (Pure and Appl. Math. Q. 2014) for μ exiting at points in $\operatorname{Reg}(\partial \Omega)$ with the precise estimate of $\|\sigma(\mu(w))\|$, namely, for any neighborhood U_{0} of the general point b in \mathbb{C} such that $U_{0} \Subset U$ and $\|\sigma(\mu(w))\|^{2}$ is real-analytic on U_{0}, there exists a real constant $C>0$ depending on U_{0} such that

$$
\|\sigma(\mu(w))\| \leq C \delta(w)
$$

for any $w \in U_{0} \cap \Delta$.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where $\lambda>0$ is a real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where $\lambda>0$ is a real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation. A theorem of Mok (2009) \& Mok-Ng (2009) says that if such a holomorphic isometry f is not totally geodesic and f is asymptotically totally geodesic, then $\|\sigma(f(w))\|^{2}$ vanishes to the order 2 or 1 at a general point $b \in \partial \Delta$, i.e., locally around b,

$$
\varphi(w):=\|\sigma(f(w))\|^{2} \leq C \delta(w)^{q}
$$

for some constant $C>0$, where $q=2$ or $q=1, \delta(w):=1-|w|$.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where $\lambda>0$ is a real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation. A theorem of Mok (2009) \& Mok-Ng (2009) says that if such a holomorphic isometry f is not totally geodesic and f is asymptotically totally geodesic, then $\|\sigma(f(w))\|^{2}$ vanishes to the order 2 or 1 at a general point $b \in \partial \Delta$, i.e., locally around b,

$$
\varphi(w):=\|\sigma(f(w))\|^{2} \leq C \delta(w)^{q}
$$

for some constant $C>0$, where $q=2$ or $q=1, \delta(w):=1-|w|$. Define $E(f):=\{b \in \partial \Delta: \varphi$ extends real-analytically around $b\}$. It is still unknown if there exists a holo. isometry $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right), b \in E(f)$, and an open neighborhood U_{b} of $b \in \partial \Delta$ in \mathbb{C} with φ extending real-analytically on U_{b}, such that

$$
C^{\prime} \delta(w)^{2}<\varphi(w)=\|\sigma(f(w))\|^{2} \leq C \delta(w)
$$

holds on $U_{b} \cap \Delta$ for some real constants $C, C^{\prime}>0$.

We will first prove the theorem when $\Omega \Subset \mathbb{C}^{N}$ is an irreducible bounded symmetric domain of rank r. Let $\mu: U=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta,\|\sigma(\mu(w))\|^{2}$ is real-analytic around b by Mok (2009).

We will first prove the theorem when $\Omega \Subset \mathbb{C}^{N}$ is an irreducible bounded symmetric domain of rank r. Let $\mu: U=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta,\|\sigma(\mu(w))\|^{2}$ is real-analytic around b by Mok (2009).
Let $\left\{w_{k}\right\}_{k=1}^{+\infty}$ be a sequence of points in $U \cap \Delta$ such that $w_{k} \rightarrow b$ as $k \rightarrow+\infty$. Let $\varphi_{k} \in \operatorname{Aut}(\Delta)$ be the map

$$
\varphi_{k}(\zeta)=\frac{\zeta+w_{k}}{1+\overline{w_{k}} \zeta} \quad\left(\varphi_{k}(0)=w_{k}\right)
$$

and $\Phi_{k} \in \operatorname{Aut}(\Omega)$ be such that $\Phi_{k}\left(\mu\left(w_{k}\right)\right)=\mathbf{0}$, i.e., $\Phi_{k}\left(\mu\left(\varphi_{k}(0)\right)\right)=\mathbf{0}$, for $k=1,2,3, \ldots$.

We will first prove the theorem when $\Omega \Subset \mathbb{C}^{N}$ is an irreducible bounded symmetric domain of rank r. Let $\mu: U=\mathbb{B}^{1}\left(b_{0}, \epsilon\right) \rightarrow \mathbb{C}^{N}, \epsilon>0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_{0} \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta,\|\sigma(\mu(w))\|^{2}$ is real-analytic around b by Mok (2009).
Let $\left\{w_{k}\right\}_{k=1}^{+\infty}$ be a sequence of points in $U \cap \Delta$ such that $w_{k} \rightarrow b$ as $k \rightarrow+\infty$. Let $\varphi_{k} \in \operatorname{Aut}(\Delta)$ be the map

$$
\varphi_{k}(\zeta)=\frac{\zeta+w_{k}}{1+\overline{w_{k}} \zeta} \quad\left(\varphi_{k}(0)=w_{k}\right)
$$

and $\Phi_{k} \in \operatorname{Aut}(\Omega)$ be such that $\Phi_{k}\left(\mu\left(w_{k}\right)\right)=\mathbf{0}$, i.e., $\Phi_{k}\left(\mu\left(\varphi_{k}(0)\right)\right)=\mathbf{0}$, for $k=1,2,3, \ldots$.

Consider the sequence $\left\{\Phi_{k} \circ\left(\mu \circ \varphi_{k}\right)\right\}_{k=1}^{+\infty}$ of germs of holomorphic maps from $(\Delta ; 0)$ to $(\Omega ; \mathbf{0})$. All $\Phi_{k} \circ\left(\mu \circ \varphi_{k}\right)$ are defined on some small open neighborhood $U^{\prime}:=\mathbb{B}^{1}\left(0, \epsilon^{\prime}\right) \subset \Delta$ of 0 in Δ, where $\epsilon^{\prime}>0$.

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\left\{w_{k}\right\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \rightarrow+\infty$. Then, after shrinking U^{\prime} if necessary, there is a subsequence of $\left\{\widetilde{\mu}_{k}:=\Phi_{k} \circ\left(\mu \circ \varphi_{k}\right)\right\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U^{\prime} such that $\widetilde{\mu}:\left(\Delta, m_{0} g_{\Delta} ; 0\right) \rightarrow\left(\Omega, g_{\Omega} ; \mathbf{0}\right)$ is a germ of holomorphic isometry from some integer $m_{0} \geq 1$.

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\left\{w_{k}\right\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \rightarrow+\infty$. Then, after shrinking U^{\prime} if necessary, there is a subsequence of $\left\{\widetilde{\mu}_{k}:=\Phi_{k} \circ\left(\mu \circ \varphi_{k}\right)\right\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U^{\prime} such that $\widetilde{\mu}:\left(\Delta, m_{0} g_{\Delta} ; 0\right) \rightarrow\left(\Omega, g_{\Omega} ; \mathbf{0}\right)$ is a germ of holomorphic isometry from some integer $m_{0} \geq 1$.
Moreover, $\widetilde{\mu}$ may be chosen such that $\|\widetilde{\sigma}(\widetilde{\mu}(w))\|^{2} \equiv\|\sigma(\mu(b))\|^{2}$ is a constant function. $\widetilde{\mu}$ can be extended to a global holomorphic isometry, still denoted by $\widetilde{\mu}$.

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\left\{w_{k}\right\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \rightarrow+\infty$. Then, after shrinking U^{\prime} if necessary, there is a subsequence of $\left\{\widetilde{\mu}_{k}:=\Phi_{k} \circ\left(\mu \circ \varphi_{k}\right)\right\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U^{\prime} such that $\widetilde{\mu}:\left(\Delta, m_{0} g_{\Delta} ; 0\right) \rightarrow\left(\Omega, g_{\Omega} ; \mathbf{0}\right)$ is a germ of holomorphic isometry from some integer $m_{0} \geq 1$.
Moreover, $\widetilde{\mu}$ may be chosen such that $\|\widetilde{\sigma}(\widetilde{\mu}(w))\|^{2} \equiv\|\sigma(\mu(b))\|^{2}$ is a constant function. $\widetilde{\mu}$ can be extended to a global holomorphic isometry, still denoted by $\tilde{\mu}$.
Write $Z:=\widetilde{\mu}(\Delta)$. At each point $w \in \Delta$, we choose a unit tangent vector $\eta(z) \in T_{z}(Z), z:=\widetilde{\mu}(w)$, and write $\xi_{z}:=\left(\xi_{z}^{1}, \ldots, \xi_{z}^{r}\right)$ for the normal form of $\eta(z)$, where $\xi_{z} \in T_{0}(\Omega)$ is tangent to the standard maximal polydisk $\Pi \cong \Delta^{r}$ in Ω, and there exists $\gamma \in \operatorname{Aut}(\Omega)$ such that (a) $\gamma(z)=0$, (b) $d \gamma(\eta(z))=\xi_{z}$, and (c) $\xi_{z}^{1} \geq \cdots \geq \xi_{z}^{r} \geq 0$ are real numbers. Then, we may further assume that $\xi_{z}^{j}=\xi^{j}, 1 \leq j \leq r$, are constants independent of z.

Remark: It is clear that $\exists k, 1 \leq k \leq r$, such that $\xi_{z}^{1} \geq \cdots \geq \xi_{z}^{k}>0$, and if $k \leq r-1$, then $\xi_{z}^{j}=0$ for all $j \geq k+1$. Then, k is called the rank of $\eta(z)$, and k is independent of z by the lemma.
With this lemma, to obtain the asymptotic total geodesy of μ, it suffices to prove that $\|\widetilde{\sigma}\|^{2} \equiv 0$, equivalently, $Z \subset \Omega$ is totally geodesic.

Remark: It is clear that $\exists k, 1 \leq k \leq r$, such that $\xi_{z}^{1} \geq \cdots \geq \xi_{z}^{k}>0$, and if $k \leq r-1$, then $\xi_{z}^{j}=0$ for all $j \geq k+1$. Then, k is called the rank of $\eta(z)$, and k is independent of z by the lemma.
With this lemma, to obtain the asymptotic total geodesy of μ, it suffices to prove that $\|\widetilde{\sigma}\|^{2} \equiv 0$, equivalently, $Z \subset \Omega$ is totally geodesic.

Rank of a tangent vector. \forall non-zero vector $v \in T_{z}(\Omega)$ we have the normal form of v given by $d \gamma_{z}(v)=\left(a_{1}, \ldots, a_{r}\right)$ that is tangent to the maximal polydisk $\cong \Delta^{r}$ at $\mathbf{0}$, and $a_{1} \geq \cdots \geq a_{r} \geq 0$ are real numbers, where $\gamma \in \operatorname{Aut}(\Omega)$ with $\gamma(z)=\mathbf{0}$ (cf. Mok 1989).
One may first get $\left(w_{1}, \ldots, w_{r}\right) \in T_{0}(\Pi) \cong T_{0}\left(\Delta^{r}\right)$ for $w_{j} \in \mathbb{C}, 1 \leq j \leq r$, but then we may apply the action of $\left(S^{1}\right)^{r}$ on Δ^{r} (as automorphisms) to get $e^{\sqrt{-1} \theta_{j}} w_{j}=a_{j} \geq 0$ for some $\theta_{j} \in[0,2 \pi), 1 \leq j \leq r$, and we rearrange the order of a_{j} 's and assume $a_{1} \geq \cdots \geq a_{r} \geq 0$. It is clear that $\exists k$, $1 \leq k \leq r$, such that $a_{1} \geq \cdots \geq a_{k}>0$ and $a_{j}=0$ for all $j \geq k+1$ if $k \leq r-1$. Then, k is called the rank of v.

This lemma also yields

Proposition

Let $f_{0}:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding. If $Z_{0}:=f_{0}(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a general point $b \in \partial Z_{0}$, then there exists by rescaling a holomorphic isometric embedding $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ with the image $Z:=f(\Delta)$ that is not totally geodesic in Ω, such that all holomorphic tangent spaces $T_{x}(Z), x \in Z$, are equivalent under $\operatorname{Aut}(\Omega)$.

Therefore, our goal is to show that Z is actually totally geodesic, and thus the original holomorphic isometry f_{0} must be asymptotically totally geodesic at general points.

Let Ω be an irr. BSD. In 2002, Mok (Comp. Math. 2002) considered $\mathcal{S} \subset \mathbb{P} T_{\Omega}$ defined as $\mathcal{S}:=\bigcup_{x \in \Omega} \mathcal{S}_{x}$, where

$$
\mathcal{S}_{x}:=\left\{[\eta] \in \mathbb{P} T_{x}(\Omega): \eta \text { is of } \operatorname{rank}<\operatorname{rank}(\Omega)\right\} .
$$

Then, $\mathcal{S}_{0} \subset \mathbb{P} T_{0}(\Omega)$ is of complex codimension $1 \Longleftrightarrow \Omega$ is of tube type, i.e., Ω is one of the following
(1) $D_{m, m}^{\prime}, m \geq 1$,
(2) $D_{n}^{\prime \prime}, n \geq 4$ is even,
(3) $D_{n}^{\prime \prime \prime}, n \geq 3$,
(4) $D_{n}^{\prime V}, n \geq 3$,
(5) $D^{V I}$ (27-dimensional exceptional domain pertaining to E_{7}).

Total geodesy of local holo. curves on Tube domains

Let Ω be an irr. BSD. In 2002, Mok (Comp. Math. 2002) considered $\mathcal{S} \subset \mathbb{P} T_{\Omega}$ defined as $\mathcal{S}:=\bigcup_{x \in \Omega} \mathcal{S}_{x}$, where

$$
\mathcal{S}_{x}:=\left\{[\eta] \in \mathbb{P} T_{x}(\Omega): \eta \text { is of } \operatorname{rank}<\operatorname{rank}(\Omega)\right\} .
$$

Then, $\mathcal{S}_{0} \subset \mathbb{P} T_{0}(\Omega)$ is of complex codimension $1 \Longleftrightarrow \Omega$ is of tube type, i.e., Ω is one of the following
(1) $D_{m, m}^{\prime}, m \geq 1$,
(2) $D_{n}^{\prime \prime}, n \geq 4$ is even,
(3) $D_{n}^{\prime \prime \prime}, n \geq 3$,
(4) $D_{n}^{\prime V}, n \geq 3$,
(5) $D^{V I}$ (27-dimensional exceptional domain pertaining to E_{7}).

Proposition

Let Ω be an irr. BSD of tube type and of rank $r, Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$-equivalent holomorphic tangent spaces spanned by holomorphic tangent vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of diagonal type, i.e. it is equivalent to the image of the $\operatorname{map} \Delta \rightarrow \Omega, w \mapsto(w, \ldots, w, \mathbf{0})$.

Proof: $\pi: \mathbb{P} T_{\Omega} \rightarrow \Omega, L \rightarrow \mathbb{P} T_{\Omega}$ tautological line bundle. By [Mok, Comp. Math. 2002], the divisor line bundle $\operatorname{Div}(\mathcal{S})$ over $\mathbb{P} T_{\Omega}$ defined by the divisor $\mathcal{S} \subset \mathbb{P} T_{\Omega}$ is

$$
\operatorname{Div}(\mathcal{S}) \cong L^{-r} \otimes \pi^{*} E^{2}
$$

where E dual to $\mathcal{O}(1)$ on the compact dual Hermitian symmetric space X_{c} of Ω. By the Poincaré-Lelong equation

$$
\frac{1}{2 \pi} \sqrt{-1} \partial \bar{\partial} \log \|s\|^{2}=r c_{1}\left(L, \hat{g}_{0}\right)-2 c_{1}\left(\pi^{*} E, \pi^{*} h_{0}\right)+[\mathcal{S}]
$$

where \hat{g}_{0} and h_{0} are canonical metrics, s is a holomorphic section of $L^{-r} \otimes \pi^{*} E^{2}$ such that the zero divisor of s is $\mathcal{S},[\mathcal{S}]$ denotes the current of integration over \mathcal{S}. Now, $\|s\|$ only depends on the $\operatorname{Aut}(\Omega)$-isomorphism type of tangent vectors in $T_{z}(\Omega), z \in \Omega$, i.e., $\|s\|$ is invariant under $\operatorname{Aut}(\Omega)$. Consider the tautological lifting \hat{Z} of Z to $\mathbb{P} T_{\Omega}$, i.e.,

$$
\hat{Z}:=\left\{[\alpha] \in \mathbb{P} T_{x}(\Omega): x \in Z, T_{x}(Z)=\mathbb{C} \alpha\right\}
$$

Then, $\hat{Z} \cap \mathcal{S}=\varnothing$.

Moreover, since Z has $\operatorname{Aut}(\Omega)$-equivalent holomorphic tangent spaces, $\|s\| \equiv$ Constant >0 on \hat{Z}, and thus

$$
\left.0 \equiv r c_{1}\left(L, \hat{g}_{0}\right)\right|_{\hat{z}}-\left.2 c_{1}\left(\pi^{*} E, \pi^{*} h_{0}\right)\right|_{\hat{z}}
$$

so that

$$
0 \equiv r c_{1}\left(T_{Z}, g_{\Omega} \mid z\right)-\left.2 c_{1}\left(E, h_{0}\right)\right|_{z}
$$

which is equivalent to the Gaussian curvature $K(x)=-\frac{2}{r}$, and thus the second fundamental form σ of Z is $0, \sigma \equiv 0$.

Inserting a totally geodesic complex submanifold $\Omega^{\prime} \supset Z$

Proposition

Let Ω be an irr. BSD, $Z \subset \Omega$ be a local holomorphic curve with Aut (Ω)-equivalent tangent spaces $T_{z}(Z)=\mathbb{C} \eta_{z}$. Suppose $\operatorname{rank}\left(\eta_{z}\right)=: k<r:=\operatorname{rank}(\Omega)$. Then, there exists a holomorphic vector bundle $W \subset T_{\Omega} \mid z$ such that
(1) defining the second fundamental form $\tau: T_{Z} \otimes W \rightarrow T_{\Omega} \mid z / W$ of W in $T_{\Omega} \mid z$ by

$$
\tau_{x}(\eta \otimes \gamma):=\left(\nabla_{\eta} \gamma\right)(x) \quad \bmod W_{x}
$$

for $x \in Z, \eta \in T_{x}(Z)$ and $\gamma \in W_{x}, \tau$ is holomorphic, i.e., $\nabla_{\bar{\beta}}\left(\nabla_{\eta} \gamma\right)(x) \in W_{x}$ for any $(1,0)$-tangent vector β of Z at x.
(2) We have $\left.\tau\right|_{T_{Z} \otimes T_{Z}} \equiv 0$, and indeed $\tau \equiv 0$, i.e., W is parallel on Z.
(3) there exists a totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that $Z \subset \Omega^{\prime}$ and $T_{z}\left(\Omega^{\prime}\right)=W_{z}$ for all $z \in Z$.
(4) Ω^{\prime} is an irreducible BSD and $\operatorname{rank}\left(\Omega^{\prime}\right)=k<\operatorname{rank}(\Omega)$.

Construction of $W \rightarrow$ Obtain $\Omega^{\prime} \supset Z$ via the method of holo. foliations.

Remark: After this proposition, we still need to consider the case where $\operatorname{rank}\left(\eta_{z}\right)=r=\operatorname{rank}(\Omega)$, and Ω is not of tube type. If Ω is of tube type, then we may apply the propositions on pages $9 \& 12$. Thus, we need to have a similar result that forces $Z \subset \Omega^{\prime}$ for some totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that $Z \subset \Omega^{\prime}, \Omega^{\prime}$ is of tube type and $\operatorname{rank}\left(\Omega^{\prime}\right)=r$.

Remark: After this proposition, we still need to consider the case where $\operatorname{rank}\left(\eta_{z}\right)=r=\operatorname{rank}(\Omega)$, and Ω is not of tube type. If Ω is of tube type, then we may apply the propositions on pages $9 \& 12$. Thus, we need to have a similar result that forces $Z \subset \Omega^{\prime}$ for some totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that $Z \subset \Omega^{\prime}, \Omega^{\prime}$ is of tube type and $\operatorname{rank}\left(\Omega^{\prime}\right)=r$.
Construction of the vector bundle W. For any $z \in \Omega$ define the Hermitian bilinear form on $T_{z}(\Omega) \otimes \overline{T_{z}(\Omega)}$ by

$$
Q_{z}(\alpha \otimes \bar{\beta}, \gamma \otimes \bar{\delta}):=R_{\alpha \bar{\gamma} \delta \bar{\beta}}\left(\Omega, g_{\Omega}\right) .
$$

In the following we simply write the curvature as $R_{\alpha \bar{\gamma} \delta \bar{\beta}}=R(\alpha, \bar{\gamma}, \delta, \bar{\beta})$. Note that $Q_{z}(\alpha \otimes \bar{\beta}, \cdot)=R_{\alpha \bar{*} * \bar{\beta}}$. For any non-zero vector $\xi \in T_{z}(\Omega)$, we define the null space

$$
\mathcal{N}_{\xi}:=\left\{v \in T_{z}(\Omega): Q_{z}(\xi \otimes \bar{v}, \cdot) \equiv 0\right\} .
$$

For any $x \in Z$, we define

$$
W_{x}:=\left\{v \in T_{x}(\Omega): Q_{x}(v \otimes \bar{\zeta}, \cdot) \equiv 0 \quad \forall \zeta \in \mathcal{N}_{\eta}\right\},
$$

where $\eta=\eta_{x} \in T_{x}(Z)$ is a non-zero vector spanning $T_{x}(Z)$. It is clear that $Q_{x}(\eta \otimes \bar{\zeta}, \cdot) \equiv 0$ for all $\zeta \in \mathcal{N}_{\eta}$ by definition, hence $T_{x}(Z) \subset W_{x}$.

Example. When $\Omega=D_{p, q}^{\prime}, 2 \leq p \leq q, \Omega$ is of rank p, we may write

$$
\eta=\operatorname{diag}_{p, q}\left(\eta_{1}, \ldots, \eta_{k}, \mathbf{0}\right)
$$

in the normal form with $\eta_{1} \geq \cdots \geq \eta_{k}>0$, where $1 \leq k<p$. Then,

$$
\mathcal{N}_{\eta}=\left\{\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & Z^{\prime}
\end{array}\right] \in M(p, q ; \mathbb{C}): Z^{\prime} \in M(p-k, q-k ; \mathbb{C})\right\}
$$

Then, W_{x} is isomorphic to

$$
\bigcap_{\zeta \in \mathcal{N}_{\eta}} \mathcal{N}_{\zeta}=\left\{\left[\begin{array}{cc}
Z^{\prime \prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \in M(p, q ; \mathbb{C}): Z^{\prime \prime} \in M(k, k ; \mathbb{C})\right\} \cong T_{\mathbf{0}}\left(D_{k, k}^{\prime}\right)
$$

If $k=p$, i.e., $\eta=\operatorname{diag}_{p, q}\left(\eta_{1}, \ldots, \eta_{p}\right)$, then $\mathcal{N}_{\eta}=\mathbf{0}$ and

$$
W_{x} \cong \bigcap_{\zeta \in \mathcal{N}_{\eta}} \mathcal{N}_{\zeta}=\mathcal{N}_{0}=T_{0}(\Omega)
$$

so that $W_{x}=T_{x}(\Omega)$, which actually holds for any irr. BSD Ω of rank ≥ 2 whenever $\operatorname{rank}(\eta)=\operatorname{rank}(\Omega)$. If Ω is not of tube type, we couldn't apply the proposition on page 9 when η is of rank $r=\operatorname{rank}(\Omega)$.

Inserting a totally geodesic complex submanifold $\Omega^{\prime} \supset Z$

Due to the issue mentioned at the end of the previous example, we will need the following proposition to deal with the case where η_{x} is of max. rank r. (The idea is similar to the previous proposition.)

Proposition

Let Ω be an irr. $B S D$, and $Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$-equivalent tangent spaces $T_{x}(Z)=\mathbb{C} \eta_{x}, x \in Z$. Then, there exists a holomorphic vector subbundle $V \subset T_{\Omega} \mid z$ such that
(1) defining the second fundamental form $\tau: T_{Z} \otimes V \rightarrow T_{\Omega} \mid z / V, \tau$ is holomorphic.
(2) $\tau \equiv 0$, i.e., V is parallel on Z.
(3) there exists a totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that $Z \subset \Omega^{\prime}, T_{x}\left(\Omega^{\prime}\right)=V_{x}$ for all $x \in Z$,
(4) Ω^{\prime} is an irreducible $B S D$ of tube type.

Inserting a totally geodesic complex submanifold $\Omega^{\prime} \supset Z$

Due to the issue mentioned at the end of the previous example, we will need the following proposition to deal with the case where η_{x} is of max. rank r. (The idea is similar to the previous proposition.)

Proposition

Let Ω be an irr. BSD, and $Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$-equivalent tangent spaces $T_{x}(Z)=\mathbb{C} \eta_{x}, x \in Z$. Then, there exists a holomorphic vector subbundle $V \subset T_{\Omega} \mid z$ such that
(1) defining the second fundamental form $\tau: T_{Z} \otimes V \rightarrow T_{\Omega} \mid z / V, \tau$ is holomorphic.
(2) $\tau \equiv 0$, i.e., V is parallel on Z.
(3) there exists a totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that $Z \subset \Omega^{\prime}, T_{x}\left(\Omega^{\prime}\right)=V_{x}$ for all $x \in Z$,
(4) Ω^{\prime} is an irreducible BSD of tube type.

For any $x \in Z, V=\bigcup_{x \in Z} V_{x}$ is defined by

$$
V_{x}=\left[\left[T_{x}(Z), \overline{T_{x}(\Omega)}\right], T_{x}(Z)\right] \subset T_{x}(\Omega)
$$

We use the Lie algebraic properties of $T_{z}(\Omega), z \in \Omega \cong G_{0} / K$.

Recall $T_{x}(Z)=\mathbb{C} \eta_{x}$ and η_{x} is of rank $k \leq r:=\operatorname{rank}(\Omega) \geq 2, x \in Z$. If $k<r$, then we have $V_{x}=W_{x}$ for $x \in Z$, so that we can just identify $V=W$, and we can find an irreducible BSD Ω^{\prime} of tube type and of rank k containing Z by the method before.

Recall $T_{x}(Z)=\mathbb{C} \eta_{x}$ and η_{x} is of rank $k \leq r:=\operatorname{rank}(\Omega) \geq 2, x \in Z$. If $k<r$, then we have $V_{x}=W_{x}$ for $x \in Z$, so that we can just identify $V=W$, and we can find an irreducible BSD Ω^{\prime} of tube type and of rank k containing Z by the method before.

However, if $k=r$, then $V_{x} \subsetneq W_{x}=T_{x}(\Omega)$ for $x \in Z$. Actually, in this case $V_{x}=T_{x}\left(\Omega^{\prime}\right)$ for some totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ of the same rank as Ω, and Ω^{\prime} is an irreducible BSD of tube type. Thus, the key point is to deal with the case where $k=r$ and make use of V. We need some extra computations regarding those assertions on V. But most arguments in our consideration of W also work here.

From the previous two propositions, we can always find a totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that
(1) $Z \subset \Omega^{\prime}$,
(2) Ω^{\prime} is an irreducible BSD of tube type and rank k,
(3) $T_{x}(Z)=\mathbb{C} \eta_{x}$ with $\eta_{x} \in T_{x}\left(\Omega^{\prime}\right)$ being a rank- k vector.

This allows us to prove that $Z \subset \Omega^{\prime}$ is totally geodesic by using the proposition on page 9 , and thus we prove the asymptotic total geodesy of the local holomorphic curve $\mu(U \cap \Delta)$ exiting the irreducible $\mathrm{BSD} \Omega$.

From the previous two propositions, we can always find a totally geodesic complex submanifold $\Omega^{\prime} \subset \Omega$ such that
(1) $Z \subset \Omega^{\prime}$,
(2) Ω^{\prime} is an irreducible BSD of tube type and rank k,
(3) $T_{x}(Z)=\mathbb{C} \eta_{x}$ with $\eta_{x} \in T_{x}\left(\Omega^{\prime}\right)$ being a rank- k vector.

This allows us to prove that $Z \subset \Omega^{\prime}$ is totally geodesic by using the proposition on page 9 , and thus we prove the asymptotic total geodesy of the local holomorphic curve $\mu(U \cap \Delta)$ exiting the irreducible BSD Ω.

When Ω is reducible, we can apply similar constructions of a holomorphic curve Z with $\operatorname{Aut}(\Omega)$-equivalent holomorphic tangent spaces, and the (holomorphic) vector bundles W and V over Z, etc.

2. Applications and some related known results

One of the consequences of our results is the following.
Theorem (C.-Mok, J. Diff. Geom. 2022)
Let D and Ω be bounded symmetric domains, $\Phi: \operatorname{Aut}_{0}(D) \rightarrow \operatorname{Aut}_{0}(\Omega)$ be a group homomorphism, and $F: D \rightarrow \Omega$ be a Φ-equivariant holomorphic map. Then, $F(D) \subset \Omega$ is a totally geodesic complex submanifold with respect to the Bergman metric $d s_{\Omega}^{2}$.

Remark: This theorem is due to L. Clozel (2007) in the cases of classical domains, and is stated in a survey article of N. Mok (2011).

2. Applications and some related known results

One of the consequences of our results is the following.

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let D and Ω be bounded symmetric domains, $\Phi: \operatorname{Aut}_{0}(D) \rightarrow \operatorname{Aut}_{0}(\Omega)$ be a group homomorphism, and $F: D \rightarrow \Omega$ be a Φ-equivariant holomorphic map. Then, $F(D) \subset \Omega$ is a totally geodesic complex submanifold with respect to the Bergman metric $d s_{\Omega}^{2}$.

Remark: This theorem is due to L. Clozel (2007) in the cases of classical domains, and is stated in a survey article of N. Mok (2011).

Idea of the proof: As in the study of holo. isometries, the key point is to deal with the case where $D \cong \Delta$ is the unit disk by using N. Mok's proof of the Hermitian metric rigidity (in general we restrict F to any minimal disk of D). Now, we consider $D \cong \Delta$. Write σ for the (1,0)-part of second fundamental form of $\left(F(D),\left.d s_{\Omega}^{2}\right|_{F(D)}\right) \subset\left(\Omega, d s_{\Omega}^{2}\right)$. By the Φ-equivariance of F, the norm $\|\sigma\|$ is constant. On the other hand, we have $\|\sigma(\mu(w))\| \rightarrow 0$ as $w \rightarrow b, w \in U \cap \Delta$, where μ is the local holomorphic curve defined in the theorem before. This forces $\|\sigma\| \equiv 0$, and thus $F(D) \subset \Omega$ is totally geodesic.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \in \mathbb{C}^{N}$ be a bounded symmetric domain and $X_{\Gamma}:=\Omega / \Gamma$ with the universal covering map $\pi: \Omega \rightarrow X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_{0}(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y:=\overline{\pi(Z)}^{\text {Zar }}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \in \mathbb{C}^{N}$ be a bounded symmetric domain and $X_{\Gamma}:=\Omega / \Gamma$ with the universal covering map $\pi: \Omega \rightarrow X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_{0}(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y:=\overline{\pi(Z)}^{\text {Zar }}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic. It is known that $X_{\Gamma}=\Omega / \Gamma$ is a quasi-projective variety even when Γ is not necessarily arithmetic. An algebraic subset of Ω is $V \cap \Omega$ for some algebraic subvariety $V \subset \widehat{\Omega}$, where $\widehat{\Omega}$ is the compact dual Hermitian symmetric space of Ω, which is a projective manifold, and $\Omega \subset \widehat{\Omega}$ can be identified as an open subset via the Borel embedding.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \subseteq \mathbb{C}^{N}$ be a bounded symmetric domain and $X_{\Gamma}:=\Omega / \Gamma$ with the universal covering map $\pi: \Omega \rightarrow X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_{0}(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y:=\overline{\pi(Z)}^{\mathrm{Zar}}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic. It is known that $X_{\Gamma}=\Omega / \Gamma$ is a quasi-projective variety even when Γ is not necessarily arithmetic. An algebraic subset of Ω is $V \cap \Omega$ for some algebraic subvariety $V \subset \widehat{\Omega}$, where $\widehat{\Omega}$ is the compact dual Hermitian symmetric space of Ω, which is a projective manifold, and $\Omega \subset \widehat{\Omega}$ can be identified as an open subset via the Borel embedding.

The above conjecture has been solved by (1) Klingler-Ullmo-Yafaev (2016) if X_{Γ} is a pure Shimura variety, i.e., Γ is arithmetic, and by (2) N . Mok (Compos. Math. 2019) if $\Omega \cong \mathbb{B}^{N}$ (Γ is not necessarily arithmetic). The general case is still open.

On the other hand, Ziyang Gao (2017) also extended this result, which is called the Ax-Lindemann principle, to any mixed Shimura variety [See a survey article of Klingler-Ullmo-Yafaev (2018)].
By the Margulis Arithmeticity Theorem, Γ is arithmetic if $\operatorname{rank}(\Omega) \geq 2$ and Ω / Γ is an irreducible quotient (i.e., Γ is irreducible).

In particular, the hyperbolic Ax-Lindemann-Weierstrass conjecture is solved if Γ is irreducible, which holds true if Ω is irreducible. Note that in general there could be non-arithmetic quotients if Ω has some irreducible factor $\cong \mathbb{B}^{n}$ (e.g. for $n=2$ or 3).

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)
Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose $\exists a$ torsion-free discrete subgroup $\check{\ulcorner } \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y}:=Z / \Gamma$ is compact (without boundary). Then, $Z \subset \Omega$ is totally geodesic.

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)
Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\subset} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y}:=Z / \Gamma \check{~ i s ~ c o m p a c t ~(w i t h o u t ~ b o u n d a r y) . ~ T h e n, ~} Z \subset \Omega$ is totally geodesic.

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\nearrow} \subset \operatorname{Aut}(\Omega)$ such that Γ stabilizes Z and

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

As a consequence, we have the following theorem that generalizes the cocompact case of Ullmo-Yafaev (2011) which characterizes totally geodesic subsets of Hermitian locally symmetric spaces of finite volume as the unique bi-algebraic subvarieties (thus yielding a reduction of the hyperbolic Ax-Lindemann-Weierstrass conjecture).

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a not necessarily arithmetic torsion-free cocompact lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Y \subset X_{\Gamma}$ be an irr. subvariety, and $Z \subset \Omega$ be an irr. component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is a totally geodesic complex submanifold.

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\subset} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

As a consequence, we have the following theorem that generalizes the cocompact case of Ullmo-Yafaev (2011) which characterizes totally geodesic subsets of Hermitian locally symmetric spaces of finite volume as the unique bi-algebraic subvarieties (thus yielding a reduction of the hyperbolic Ax-Lindemann-Weierstrass conjecture).

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^{N}$ be a $B S D$, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a not necessarily arithmetic torsion-free cocompact lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Y \subset X_{\Gamma}$ be an irr. subvariety, and $Z \subset \Omega$ be an irr. component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is a totally geodesic complex submanifold.

This theorem could be generalized to the case where Γ is a lattice (not necessarily cocompact) provided that Problem 1 is solved.

Idea of the proof of the main theorem

We first assume that $\check{Y}=Z / \check{\Gamma}$ is quasi-projective instead of compact. Let H_{0} be the identity component of $\operatorname{Stab}(Z):=\left\{g \in G_{0}: g(Z)=Z\right\}$, where $G_{0}:=\operatorname{Aut}_{0}(\Omega)$. We show that $H_{0} \subset G_{0}$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.

Idea of the proof of the main theorem

We first assume that $\check{Y}=Z / \check{\Gamma}$ is quasi-projective instead of compact. Let H_{0} be the identity component of $\operatorname{Stab}(Z):=\left\{g \in G_{0}: g(Z)=Z\right\}$, where $G_{0}:=\operatorname{Aut}_{0}(\Omega)$. We show that $H_{0} \subset G_{0}$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.
Moreover, $\hat{\Gamma}:=H_{0} \cap \check{\Gamma} \subset \check{\Gamma}$ is a subgroup of finite index. In particular, we have a finite unramified covering map $Z / \hat{\Gamma} \rightarrow Z / \check{\Gamma}$. Hence, if $Z / \check{\Gamma}$ is compact, then so is $Z / \hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z / \bar{\Gamma}$ instead of $Z / \check{\Gamma}$.

Idea of the proof of the main theorem

We first assume that $\check{Y}=Z / \Gamma$ is quasi-projective instead of compact. Let H_{0} be the identity component of $\operatorname{Stab}(Z):=\left\{g \in G_{0}: g(Z)=Z\right\}$, where $G_{0}:=\operatorname{Aut}_{0}(\Omega)$. We show that $H_{0} \subset G_{0}$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.
Moreover, $\hat{\Gamma}:=H_{0} \cap \check{\Gamma} \subset \check{\Gamma}$ is a subgroup of finite index. In particular, we have a finite unramified covering map $Z / \hat{\Gamma} \rightarrow Z / \check{\Gamma}$. Hence, if $Z / \check{\Gamma}$ is compact, then so is $Z / \hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z / \hat{\Gamma}$ instead of Z / Γ.
If Z / Γ is quasi-projective, then so is $Z / \hat{\Gamma}$ by Riemann's existence theorem and the fact that $\check{\Gamma}$ acts on Z without fixed points (cf. Remark 1.3 on p. 2082 of [R. Friedman \& R. Laza, Duke Math. J. 2013]).
R. Friedman \& R. Laza have also pointed out that a finite ramified cover of a quasiprojective variety need not be quasiprojective in general.

Idea of the proof of the main theorem

We first assume that $\check{Y}=Z / \Gamma$ is quasi-projective instead of compact. Let H_{0} be the identity component of $\operatorname{Stab}(Z):=\left\{g \in G_{0}: g(Z)=Z\right\}$, where $G_{0}:=\operatorname{Aut}_{0}(\Omega)$. We show that $H_{0} \subset G_{0}$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.
Moreover, $\hat{\Gamma}:=H_{0} \cap \check{\Gamma} \subset \check{~ i s ~ a ~ s u b g r o u p ~ o f ~ f i n i t e ~ i n d e x . ~ I n ~ p a r t i c u l a r, ~ w e ~}$ have a finite unramified covering map $Z / \hat{\Gamma} \rightarrow Z / \check{\Gamma}$. Hence, if $Z / \check{\Gamma}$ is compact, then so is $Z / \hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z / \bar{\Gamma}$ instead of Z / Γ.
If $Z / \check{\Gamma}$ is quasi-projective, then so is $Z / \hat{\Gamma}$ by Riemann's existence theorem and the fact that $\check{\Gamma}$ acts on Z without fixed points (cf. Remark 1.3 on p. 2082 of [R. Friedman \& R. Laza, Duke Math. J. 2013]).
R. Friedman \& R. Laza have also pointed out that a finite ramified cover of a quasiprojective variety need not be quasiprojective in general.

We have the complexification $H \subset G:=G_{0}^{\mathbb{C}}$ of H_{0}, and H is a complex algebraic group. Here, $X_{c}=G / P$ is the compact dual Hermitian symmetric space of Ω and we can identify $\Omega \subset X_{c}$ as an open subset via the Borel embedding, where $P \subset G$ is some parabolic subgroup.

We have the following proposition by using the maximum principle.

Proposition

For $x \in Z, Z \subset H x \cap \Omega$ is an irreducible component. (Recall $\Omega \subseteq \mathbb{C}^{N}$.)

We have the following proposition by using the maximum principle.

Proposition

For $x \in Z, Z \subset H x \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^{N}$.)
Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_{c}$. If $H x \cap Z \subsetneq Z$, then we can find a Zariski closed subset $E \subsetneq Z$ (i.e., E is a finite union of irreducible components of $\widehat{E} \cap \Omega$ for some projective subvariety $\widehat{E} \subset X_{c}$) such that $H x \cap Z \subset E$, and a polynomial $p(z)$ in $z \in \mathbb{C}^{N}$ such that $\left.p\right|_{\hat{E} \cap \mathbb{C}^{N}} \equiv 0$ and $\left.p\right|_{\hat{Z} \cap \mathbb{C}^{N}} \neq 0$.

We have the following proposition by using the maximum principle.

Proposition

For $x \in Z, Z \subset H x \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^{N}$.)
Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_{c}$. If $H x \cap Z \subsetneq Z$, then we can find a Zariski closed subset $E \subsetneq Z$ (i.e., E is a finite union of irreducible components of $\widehat{E} \cap \Omega$ for some projective subvariety $\hat{E} \subset X_{c}$) such that $H x \cap Z \subset E$, and a polynomial $p(z)$ in $z \in \mathbb{C}^{N}$ such that $\left.p\right|_{\hat{E} \cap \mathbb{C}^{N}} \equiv 0$ and $\left.p\right|_{\hat{Z} \cap \mathbb{C}^{N}} \neq 0$. Define $\Phi: \Omega \rightarrow \mathbb{R}$ by $\Phi(z):=\sup \{|p(\gamma(z))|: \gamma \in \Gamma\}$. Note that $|p(\gamma(z))| \leq \sup _{\Omega}|p|<+\infty$.
This will give a nonconstant bounded plurisubharmonic function on $\check{Y}=Z / \check{\Gamma}$, a plain contradiction by the maximum principle and the Riemann extension theorem.

We have the following proposition by using the maximum principle.

Proposition

For $x \in Z, Z \subset H x \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^{N}$.)
Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_{c}$. If $H x \cap Z \subsetneq Z$, then we can find a Zariski closed subset $E \subsetneq Z$ (i.e., E is a finite union of irreducible components of $\widehat{E} \cap \Omega$ for some projective subvariety $\widehat{E} \subset X_{c}$) such that $H x \cap Z \subset E$, and a polynomial $p(z)$ in $z \in \mathbb{C}^{N}$ such that $\left.p\right|_{\hat{E} \cap \mathbb{C}^{N}} \equiv 0$ and $\left.p\right|_{\hat{Z} \cap \mathbb{C}^{N}} \neq 0$. Define $\Phi: \Omega \rightarrow \mathbb{R}$ by $\Phi(z):=\sup \{|p(\gamma(z))|: \gamma \in \check{\}}\}$. Note that $|p(\gamma(z))| \leq \sup _{\bar{\Omega}}|p|<+\infty$.
This will give a nonconstant bounded plurisubharmonic function on $\check{Y}=Z / \check{\Gamma}$, a plain contradiction by the maximum principle and the Riemann extension theorem. Since H acts algebraically on X_{c}, we have $\overline{H x} \cap Z=Z$. If $H x \cap Z \subsetneq Z$, then letting $y \in Z \backslash H x$, we still get $\overline{H y} \cap Z=Z$ as before, but then this contradicts with the fact that $H x$ and $H y$ are disjoint orbits. Hence, $H x \cap Z=Z$ for any $x \in Z$.

The previous proposition implies that $Z \subset \Omega$ is smooth by the smoothness of $H x$ and that $\Omega \subset X_{c}$ is an open subset. We also have the (real) orbit $H_{0} x \subset Z \subset H x$. Since $\check{Y}=Z / \check{\Gamma}$ (equipped with the Kähler metric $g_{\check{Y}}$ induced from $d s_{\Omega}^{2} \mid z$) is a compact Kähler manifold with ample canonical line bundle $K_{\check{Y}}$, we may make use of a consequence of Nadel's semisimplicity theorem [Nadel, Ann. of Math. 1990] to obtain that H_{0} is a semisimple Lie group of the noncompact type (i.e., without compact factors).

Theorem (Nadel's semisimplicity theorem , Ann. of Math. 132 (1990))

Let X be a compact Kähler manifold with ample canonical line bundle K_{X}, and denote by $\pi: \widetilde{X} \rightarrow X$ the uniformization map. Then, $\operatorname{Aut}_{0}(\widetilde{X})$ is a semisimple Lie group of the noncompact type.

The previous proposition implies that $Z \subset \Omega$ is smooth by the smoothness of $H x$ and that $\Omega \subset X_{c}$ is an open subset. We also have the (real) orbit $H_{0} x \subset Z \subset H x$. Since $\check{Y}=Z / \check{\Gamma}$ (equipped with the Kähler metric $g_{\check{Y}}$ induced from $d s_{\Omega}^{2} \mid z$) is a compact Kähler manifold with ample canonical line bundle $K_{\check{Y}}$, we may make use of a consequence of Nadel's semisimplicity theorem [Nadel, Ann. of Math. 1990] to obtain that H_{0} is a semisimple Lie group of the noncompact type (i.e., without compact factors).

Theorem (Nadel's semisimplicity theorem , Ann. of Math. 132 (1990))

Let X be a compact Kähler manifold with ample canonical line bundle K_{X}, and denote by $\pi: \widetilde{X} \rightarrow X$ the uniformization map. Then, $\operatorname{Aut}_{0}(\widetilde{X})$ is a semisimple Lie group of the noncompact type.

Now, H_{0} is a semisimple Lie group of the noncompact type. To prove the main theorem, we will show that $Z=H_{0} x$ is Riemannian symmetric of the semisimple and noncompact type by showing that $\operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right)=\operatorname{dim}_{\mathbb{R}}(Z)$ and $\left(H_{0}\right)_{x} \subset H_{0}$ is the maximal compact subgroup. In particular, we see that $Z \subset \Omega$ is a totally geodesic complex submanifold, and the main theorem will follow.

Outline of the proof: We have $H_{0} x \cong H_{0} /\left(H_{0}\right)_{x}$, where $\left(H_{0}\right)_{x}:=$ $\left\{h \in H_{0}: h(x)=x\right\}$. Note that $\left(H_{0}\right)_{x} \subset\left\{g \in G_{0}: g(x)=x\right\}=: K_{x}$ and $K_{x} \subset G_{0}$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_{0}$ such that $\left(H_{0}\right)_{\times} \subset L$, and $H_{0} / L \cong \mathbb{R}^{n}$ is a diffeomorphism for some n.

Outline of the proof: We have $H_{0} x \cong H_{0} /\left(H_{0}\right)_{x}$, where $\left(H_{0}\right)_{x}:=$ $\left\{h \in H_{0}: h(x)=x\right\}$. Note that $\left(H_{0}\right)_{x} \subset\left\{g \in G_{0}: g(x)=x\right\}=: K_{x}$ and $K_{x} \subset G_{0}$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_{0}$ such that $\left(H_{0}\right)_{\times} \subset L$, and $H_{0} / L \cong \mathbb{R}^{n}$ is a diffeomorphism for some n. Consider the $K(\hat{\Gamma}, 1)$'s (i.e., Eilenberg-MacLane spaces X with $\pi_{1}(X) \cong \hat{\Gamma}$ and $\pi_{k}(X)$ is trivial for $k \neq 1$)

$$
g: S_{\hat{\Gamma}}:=\hat{\Gamma} \backslash H_{0} / L \hookrightarrow \hat{\Gamma} \backslash \Omega \cong \Omega / \hat{\Gamma}=: X_{\hat{\Gamma}}
$$

and the inclusion map $\iota: \hat{Y}:=Z / \hat{\Gamma} \hookrightarrow X_{\hat{\Gamma}}$. We have the finite covering $\hat{Y} \rightarrow \check{Y}$ and \check{Y} is compact (without boundary), thus \hat{Y} is compact.

Outline of the proof: We have $H_{0} x \cong H_{0} /\left(H_{0}\right)_{x}$, where $\left(H_{0}\right)_{x}:=$ $\left\{h \in H_{0}: h(x)=x\right\}$. Note that $\left(H_{0}\right)_{x} \subset\left\{g \in G_{0}: g(x)=x\right\}=: K_{x}$ and $K_{x} \subset G_{0}$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_{0}$ such that $\left(H_{0}\right)_{x} \subset L$, and $H_{0} / L \cong \mathbb{R}^{n}$ is a diffeomorphism for some n. Consider the $K(\hat{\Gamma}, 1)$'s (i.e., Eilenberg-MacLane spaces X with $\pi_{1}(X) \cong \hat{\Gamma}$ and $\pi_{k}(X)$ is trivial for $k \neq 1$)

$$
g: S_{\hat{\Gamma}}:=\hat{\Gamma} \backslash H_{0} / L \hookrightarrow \hat{\Gamma} \backslash \Omega \cong \Omega / \hat{\Gamma}=: X_{\hat{\Gamma}}
$$

and the inclusion map $\iota: \hat{Y}:=Z / \hat{\Gamma} \hookrightarrow X_{\hat{\Gamma}}$. We have the finite covering $\hat{Y} \rightarrow \check{Y}$ and \check{Y} is compact (without boundary), thus \hat{Y} is compact. Now, $g_{*}: \pi_{1}\left(S_{\hat{\Gamma}}\right) \rightarrow \pi_{1}\left(X_{\hat{\Gamma}}\right)$ is a group isomorphism, and $\iota_{*}: \pi_{1}(\hat{Y}) \rightarrow \pi_{1}\left(X_{\hat{\Gamma}}\right)$ is a group homomorphism. Consider the group homomorphism

$$
\left(g_{*}\right)^{-1} \circ \iota_{*}: \pi_{1}(\hat{Y}) \rightarrow \pi_{1}\left(S_{\hat{\Gamma}}\right) .
$$

Then, there is a continuous map $f: \hat{Y} \rightarrow S_{\hat{\Gamma}}$ such that

$$
f_{*}=\left(g_{*}\right)^{-1} \circ \iota_{*}
$$

by Whitehead's theorem. Letting $g \circ f: \hat{Y} \rightarrow X_{\hat{\Gamma}}$, we have

$$
(g \circ f)_{*}=g_{*} \circ f_{*}=\iota_{*} .
$$

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$
g \circ f: \hat{Y} \rightarrow X_{\hat{\Gamma}}, \quad \iota: \hat{Y} \hookrightarrow X_{\hat{\Gamma}} .
$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$
(g \circ f)^{*}=\iota^{*}: H_{\mathrm{dR}}^{p}\left(X_{\hat{\Gamma}}\right) \rightarrow H_{\mathrm{dR}}^{p}(\hat{Y})
$$

for all p.

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$
g \circ f: \hat{Y} \rightarrow X_{\hat{\Gamma}}, \quad \iota: \hat{Y} \hookrightarrow X_{\hat{\Gamma}} .
$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$
(g \circ f)^{*}=\iota^{*}: H_{\mathrm{dR}}^{p}\left(X_{\hat{\Gamma}}\right) \rightarrow H_{\mathrm{dR}}^{p}(\hat{Y})
$$

for all p. Write $\hat{\omega}$ for the Kähler form of $X_{\hat{\Gamma}}=\Omega / \hat{\Gamma}$ with the Kähler metric $g x_{\mathrm{f}}$ induced from $d s_{\Omega}^{2}$. Write $s:=\operatorname{dim}_{\mathbb{C}}(\hat{Y})=\operatorname{dim}_{\mathbb{C}}(Z)$. Then,

$$
\iota^{*} \frac{\hat{\omega}^{s}}{s!}=(g \circ f)^{*} \frac{\hat{\omega}^{s}}{s!}+d \eta_{0}
$$

and $\iota^{*} \frac{\hat{\omega}^{s}}{s!}$ is the volume form of the compact Kähler manifold $\left(\hat{Y},\left.g_{X_{\rho}}\right|_{\hat{Y}}\right)$.

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$
g \circ f: \hat{Y} \rightarrow X_{\hat{\Gamma}}, \quad \iota: \hat{Y} \hookrightarrow X_{\hat{\Gamma}} .
$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$
(g \circ f)^{*}=\iota^{*}: H_{\mathrm{dR}}^{p}\left(X_{\hat{\Gamma}}\right) \rightarrow H_{\mathrm{dR}}^{p}(\hat{Y})
$$

for all p. Write $\hat{\omega}$ for the Kähler form of $X_{\hat{\Gamma}}=\Omega / \hat{\Gamma}$ with the Kähler metric $g x_{\hat{\Gamma}}$ induced from $d s_{\Omega}^{2}$. Write $s:=\operatorname{dim}_{\mathbb{C}}(\hat{Y})=\operatorname{dim}_{\mathbb{C}}(Z)$. Then,

$$
\iota^{*} \frac{\hat{\omega}^{s}}{s!}=(g \circ f)^{*} \frac{\hat{\omega}^{s}}{s!}+d \eta_{0}
$$

and $\iota^{*} \frac{\hat{\omega}^{s}}{s!}$ is the volume form of the compact Kähler manifold $\left(\hat{Y},\left.g_{X_{\rho}}\right|_{\hat{Y}}\right)$. If $\operatorname{dim}_{\mathbb{R}}\left(S_{\hat{\Gamma}}\right)<2 s$, then $g^{*} \hat{\omega}^{s}=0$ so that

$$
\iota^{*} \frac{\hat{\omega}^{s}}{s!}=d \eta_{0}
$$

on \hat{Y}, and we would have $\operatorname{Vol}(\hat{Y})=0$ by Stokes' Theorem, a plain contradiction. Therefore, $\operatorname{dim}_{\mathbb{R}}\left(S_{\hat{\Gamma}}\right) \geq 2 s$.

We have

$$
\operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \geq \operatorname{dim}_{\mathbb{R}}\left(H_{0} / L\right)=\operatorname{dim}_{\mathbb{R}}\left(S_{\hat{\Gamma}}\right) \geq 2 s=\operatorname{dim}_{\mathbb{R}}(Z)
$$

Thus, $\operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right)=\operatorname{dim}_{\mathbb{R}}(Z)$ so that $Z=H_{0} x \cong H_{0} / L$ is Riemannian symmetric of the semisimple and noncompact type. Since Z is a complex manifold, Z is indeed a Hermitian symmetric space of noncompact type. By the theorem on page 18 about equivariant holomorphic maps, we obtain the total geodesy of Z in Ω.
Remark: In this proof, one may consider the case where $\check{Y}=Z / \Gamma$ is only assumed quasi-projective so that $\hat{Y}=Z / \hat{\Gamma}$ is also quasi-projective. Then, we still obtain $\iota^{*} \frac{\hat{\omega}^{s}}{s!}=d \eta_{0}$. However, we could not apply Stokes' Theorem in the in order to do the dimension estimates as in the case where \check{Y} (resp. \hat{Y}) is compact.

We have

$$
\operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \geq \operatorname{dim}_{\mathbb{R}}\left(H_{0} / L\right)=\operatorname{dim}_{\mathbb{R}}\left(S_{\hat{\Gamma}}\right) \geq 2 s=\operatorname{dim}_{\mathbb{R}}(Z)
$$

Thus, $\operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right)=\operatorname{dim}_{\mathbb{R}}(Z)$ so that $Z=H_{0} x \cong H_{0} / L$ is Riemannian symmetric of the semisimple and noncompact type. Since Z is a complex manifold, Z is indeed a Hermitian symmetric space of noncompact type. By the theorem on page 18 about equivariant holomorphic maps, we obtain the total geodesy of Z in Ω.
Remark: In this proof, one may consider the case where $\check{Y}=Z / \Gamma$ is only assumed quasi-projective so that $\hat{Y}=Z / \hat{\Gamma}$ is also quasi-projective. Then, we still obtain $\iota^{*} \frac{\hat{\omega}^{s}}{s!}=d \eta_{0}$. However, we could not apply Stokes' Theorem in the in order to do the dimension estimates as in the case where \check{Y} (resp. \hat{Y}) is compact. Another issue is that if $\check{Y}=Z / \check{\Gamma}$ is quasi-projective and noncompact, then we could not apply Nadel's semisimplicity theorem to show that H_{0} is semisimple. However, there could be other ways to prove the semisimplicity of H_{0}.
S.-T. Chan \& N. Mok: Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets, J. Differential Geom. 120 (2022), no. 1, 1-49.
N. Mok:
(1) Characterization of certain holomorphic geodesic cycles on quotients of bounded symmetric domains in terms of tangent subspaces, Compositio Math. 132 (2002), no. 3, 289-309.
(2) On the asymptotic behavior of holomorphic isometries of the Poincaré disk into bounded symmetric domains, Acta Math. Sci. Ser. B (Engl. Ed.) 29 (2009), no. 4, 881-902.
(3) Local holomorphic curves on a bounded symmetric domain in its Harish-Chandra realization exiting at regular points of the boundary, Pure Appl. Math. Q. 10 (2014), no. 2, 259-288.
N. Mok \& S.-C. Ng: Second fundamental forms of holomorphic isometries of the Poincaré disk into bounded symmetric domains and their boundary behavior along the unit circle, Sci. China Ser. A 52 (2009), no. 12, 2628-2646.

References: Hyperbolic Ax-Lindemann-Weierstrass Conj.

Ziyang Gao: Towards the André-Oort conjecture for mixed Shimura varieties: the $A x$-Lindemann theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math. 732 (2017), 85-146.
B. Klingler, E. Ullmo \& A. Yafaev:
(1) The hyperbolic $A x$-Lindemann-Weierstrass conjecture, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 333-360.
(2) Bi-algebraic geometry and the André-Oort conjecture, Algebraic geometry: Salt Lake City 2015, 319-359. Proc. Sympos. Pure Math., 97.2 American Mathematical Society, Providence, RI, 2018.
N. Mok: Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball, Compos. Math. 155 (2019), 2129-2149.
E. Ullmo \& A. Yafaev: A characterization of special subvarieties, Mathematika 57 (2011), 263-273.

Thank you!

