Geometry of holomorphic isometric embeddings between bounded symmetric domains and applications

Shan-Tai Chan

Institute of Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences

September 5, 2023

Lecture 2

2023 Morningside Center of Mathematics Geometry Summer School

- 1. Asymptotic behaviour of local holomorphic curves
- 2. Applications and some related known results

These materials are based on my joint work with N. Mok (*J. Differential Geom.* 2022).

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain (BSD) equipped with the Bergman metric ds_{Ω}^2 . Let $\mu : U := \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in (Ω, ds_{Ω}^2) at $z = \mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

 $\lim_{w\in U\cap\Delta, w\to b} \|\sigma(\mu(w))\| = 0.$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$.

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain (BSD) equipped with the Bergman metric ds_{Ω}^2 . Let $\mu : U := \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in (Ω, ds_{Ω}^2) at $z = \mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

 $\lim_{w\in U\cap\Delta, \ w\to b} \|\sigma(\mu(w))\| = 0.$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$. For the last statement we say for short that μ is **asymptotically totally geodesic** at a general point $b \in \partial \Delta$. Moreover, we have not obtained a precise estimate on $\|\sigma(\mu(w))\|$.

1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain (BSD) equipped with the Bergman metric ds_{Ω}^2 . Let $\mu : U := \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. Denote by $\sigma(z)$ the second fundamental form of $\mu(U \cap \Delta)$ in (Ω, ds_{Ω}^2) at $z = \mu(w)$. Then, for a general point $b \in U \cap \partial \Delta$ we have

 $\lim_{w\in U\cap\Delta, \ w\to b} \|\sigma(\mu(w))\| = 0.$

Here, a general point b on $U \cap \partial \Delta$ means all b on the circular arc $U \cap \partial \Delta$ except for a discrete subset of $U \cap \partial \Delta$. For the last statement we say for short that μ is **asymptotically totally geodesic** at a general point $b \in \partial \Delta$. Moreover, we have not obtained a precise estimate on $\|\sigma(\mu(w))\|$. However, this theorem was obtained by N. Mok (*Pure and Appl. Math. Q.* 2014) for μ exiting at points in $\operatorname{Reg}(\partial \Omega)$ with the precise estimate of $\|\sigma(\mu(w))\|$, namely, for any neighborhood U_0 of the general point b in \mathbb{C} such that $U_0 \Subset U$ and $\|\sigma(\mu(w))\|^2$ is real-analytic on U_0 , there exists a real constant C > 0 depending on U_0 such that

$$\|\sigma(\mu(w))\| \leq C\delta(w)$$

for any $w \in U_0 \cap \Delta$.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where $\lambda > 0$ is a real constant and $\Omega \in \mathbb{C}^N$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where $\lambda > 0$ is a real constant and $\Omega \in \mathbb{C}^N$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation. A theorem of Mok (2009) & Mok-Ng (2009) says that if such a holomorphic isometry f is not totally geodesic and f is asymptotically totally geodesic, then $\|\sigma(f(w))\|^2$ vanishes to the order 2 or 1 at a general point $b \in \partial \Delta$, i.e., locally around b,

$$\varphi(w) := \|\sigma(f(w))\|^2 \leq C\delta(w)^q$$

for some constant C > 0, where q = 2 or q = 1, $\delta(w) := 1 - |w|$.

By the fact that holo. isometries extend holomorphically around a general boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where $\lambda > 0$ is a real constant and $\Omega \in \mathbb{C}^N$ is a bounded symmetric domain. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Remark: This theorem was stated in the survey article of N. Mok (2011) where it was indicated that the proof relies on the Poincaré-Lelong equation. A theorem of Mok (2009) & Mok-Ng (2009) says that if such a holomorphic isometry f is not totally geodesic and f is asymptotically totally geodesic, then $\|\sigma(f(w))\|^2$ vanishes to the order 2 or 1 at a general point $b \in \partial \Delta$, i.e., locally around b,

$$\varphi(w) := \left\|\sigma(f(w))\right\|^2 \leq C\delta(w)^q$$

for some constant C > 0, where q = 2 or q = 1, $\delta(w) := 1 - |w|$. Define $E(f) := \{b \in \partial \Delta : \varphi \text{ extends real-analytically around } b\}$. It is still unknown if there exists a holo. isometry $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$, $b \in E(f)$, and an open neighborhood U_b of $b \in \partial \Delta$ in \mathbb{C} with φ extending real-analytically on U_b , such that

$$C'\delta(w)^2 < \varphi(w) = \|\sigma(f(w))\|^2 \le C\delta(w)$$

holds on $U_b \cap \Delta$ for some real constants C, C' > 0.

Holomorphic isometries via the Rescaling Argument

We will first prove the theorem when $\Omega \Subset \mathbb{C}^N$ is an irreducible bounded symmetric domain of rank r. Let $\mu : U = \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta$, $\|\sigma(\mu(w))\|^2$ is real-analytic around b by Mok (2009). We will first prove the theorem when $\Omega \Subset \mathbb{C}^N$ is an irreducible bounded symmetric domain of rank r. Let $\mu : U = \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta$, $\|\sigma(\mu(w))\|^2$ is real-analytic around b by Mok (2009).

Let $\{w_k\}_{k=1}^{+\infty}$ be a sequence of points in $U \cap \Delta$ such that $w_k \to b$ as $k \to +\infty$. Let $\varphi_k \in Aut(\Delta)$ be the map

$$arphi_k(\zeta) = rac{\zeta + w_k}{1 + \overline{w_k}\zeta} \qquad (arphi_k(0) = w_k)$$

and $\Phi_k \in \operatorname{Aut}(\Omega)$ be such that $\Phi_k(\mu(w_k)) = \mathbf{0}$, i.e., $\Phi_k(\mu(\varphi_k(0))) = \mathbf{0}$, for k = 1, 2, 3, ...

We will first prove the theorem when $\Omega \Subset \mathbb{C}^N$ is an irreducible bounded symmetric domain of rank r. Let $\mu : U = \mathbb{B}^1(b_0, \epsilon) \to \mathbb{C}^N$, $\epsilon > 0$, be a holomorphic embedding such that $\mu(U \cap \Delta) \subset \Omega$ and $\mu(U \cap \partial \Delta) \subset \partial \Omega$, where $b_0 \in \partial \Delta$. For a general point $b \in U \cap \partial \Delta$, $\|\sigma(\mu(w))\|^2$ is real-analytic around b by Mok (2009).

Let $\{w_k\}_{k=1}^{+\infty}$ be a sequence of points in $U \cap \Delta$ such that $w_k \to b$ as $k \to +\infty$. Let $\varphi_k \in Aut(\Delta)$ be the map

$$arphi_k(\zeta) = rac{\zeta + w_k}{1 + \overline{w_k}\zeta} \qquad (arphi_k(0) = w_k)$$

and $\Phi_k \in \operatorname{Aut}(\Omega)$ be such that $\Phi_k(\mu(w_k)) = \mathbf{0}$, i.e., $\Phi_k(\mu(\varphi_k(0))) = \mathbf{0}$, for k = 1, 2, 3, ...

Consider the sequence $\{\Phi_k \circ (\mu \circ \varphi_k)\}_{k=1}^{+\infty}$ of germs of holomorphic maps from (Δ ; 0) to (Ω ; 0). All $\Phi_k \circ (\mu \circ \varphi_k)$ are defined on some small open neighborhood $U' := \mathbb{B}^1(0, \epsilon') \subset \Delta$ of 0 in Δ , where $\epsilon' > 0$.

Embedded Δ with Aut(Ω)-equi. holo. tangents

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\{w_k\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \to +\infty$. Then, after shrinking U' if necessary, there is a subsequence of $\{\widetilde{\mu}_k := \Phi_k \circ (\mu \circ \varphi_k)\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U' such that $\widetilde{\mu} : (\Delta, m_0 g_\Delta; 0) \to (\Omega, g_\Omega; \mathbf{0})$ is a germ of holomorphic isometry from some integer $m_0 \geq 1$.

Embedded Δ with Aut(Ω)-equi. holo. tangents

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\{w_k\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \to +\infty$. Then, after shrinking U' if necessary, there is a subsequence of $\{\widetilde{\mu}_k := \Phi_k \circ (\mu \circ \varphi_k)\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U' such that $\widetilde{\mu} : (\Delta, m_0 g_\Delta; 0) \to (\Omega, g_\Omega; \mathbf{0})$ is a germ of holomorphic isometry from some integer $m_0 \geq 1$. Moreover, $\widetilde{\mu}$ may be chosen such that $\|\widetilde{\sigma}(\widetilde{\mu}(w))\|^2 \equiv \|\sigma(\mu(b))\|^2$ is a constant function. $\widetilde{\mu}$ can be extended to a global holomorphic isometry, still denoted by $\widetilde{\mu}$.

Lemma

Let $b \in U \cap \partial \Delta$ be a general point. Choose some sequence $\{w_k\}_{k=1}^{+\infty}$ of points in $U \cap \Delta$ converging to a general point $b \in U \cap \partial \Delta$ as $k \to +\infty$. Then, after shrinking U' if necessary, there is a subsequence of $\{\widetilde{\mu}_k := \Phi_k \circ (\mu \circ \varphi_k)\}_{k=1}^{+\infty}$ which converges to some holomorphic map $\widetilde{\mu}$ on U' such that $\widetilde{\mu} : (\Delta, m_0 g_\Delta; 0) \to (\Omega, g_\Omega; \mathbf{0})$ is a germ of holomorphic isometry from some integer $m_0 \geq 1$.

Moreover, $\tilde{\mu}$ may be chosen such that $\|\tilde{\sigma}(\tilde{\mu}(w))\|^2 \equiv \|\sigma(\mu(b))\|^2$ is a constant function. $\tilde{\mu}$ can be extended to a global holomorphic isometry, still denoted by $\tilde{\mu}$.

Write $Z := \tilde{\mu}(\Delta)$. At each point $w \in \Delta$, we choose a unit tangent vector $\eta(z) \in T_z(Z)$, $z := \tilde{\mu}(w)$, and write $\xi_z := (\xi_z^1, \ldots, \xi_z^r)$ for the normal form of $\eta(z)$, where $\xi_z \in T_0(\Omega)$ is tangent to the standard maximal polydisk $\Pi \cong \Delta^r$ in Ω , and there exists $\gamma \in \operatorname{Aut}(\Omega)$ such that (a) $\gamma(z) = 0$, (b) $d\gamma(\eta(z)) = \xi_z$, and (c) $\xi_z^1 \ge \cdots \ge \xi_z^r \ge 0$ are real numbers. Then, we may further assume that $\xi_z^j = \xi^j$, $1 \le j \le r$, are constants independent of z.

Remark: It is clear that $\exists k, 1 \le k \le r$, such that $\xi_z^1 \ge \cdots \ge \xi_z^k > 0$, and if $k \le r - 1$, then $\xi_z^j = 0$ for all $j \ge k + 1$. Then, k is called the rank of $\eta(z)$, and k is independent of z by the lemma. With this lemma, to obtain the asymptotic total geodesy of μ , it suffices to prove that $\|\tilde{\sigma}\|^2 \equiv 0$, equivalently, $Z \subset \Omega$ is totally geodesic. **Remark:** It is clear that $\exists k, 1 \le k \le r$, such that $\xi_z^1 \ge \cdots \ge \xi_z^k > 0$, and if $k \le r - 1$, then $\xi_z^j = 0$ for all $j \ge k + 1$. Then, k is called the rank of $\eta(z)$, and k is independent of z by the lemma. With this lemma, to obtain the asymptotic total geodesy of μ , it suffices to prove that $\|\tilde{\sigma}\|^2 \equiv 0$, equivalently, $Z \subset \Omega$ is totally geodesic.

Rank of a tangent vector. \forall non-zero vector $v \in T_z(\Omega)$ we have the normal form of v given by $d\gamma_z(v) = (a_1, \ldots, a_r)$ that is tangent to the maximal polydisk $\cong \Delta^r$ at $\mathbf{0}$, and $a_1 \ge \cdots \ge a_r \ge 0$ are real numbers, where $\gamma \in \operatorname{Aut}(\Omega)$ with $\gamma(z) = \mathbf{0}$ (cf. Mok 1989). One may first get $(w_1, \ldots, w_r) \in T_0(\Pi) \cong T_0(\Delta^r)$ for $w_j \in \mathbb{C}$, $1 \le j \le r$, but then we may apply the action of $(S^1)^r$ on Δ^r (as automorphisms) to get $e^{\sqrt{-1}\theta_j}w_j = a_j \ge 0$ for some $\theta_j \in [0, 2\pi)$, $1 \le j \le r$, and we rearrange the order of a_j 's and assume $a_1 \ge \cdots \ge a_r \ge 0$. It is clear that $\exists k$, $1 \le k \le r$, such that $a_1 \ge \cdots \ge a_k > 0$ and $a_j = 0$ for all $j \ge k + 1$ if $k \le r - 1$. Then, k is called the rank of v.

This lemma also yields

Proposition

Let $f_0 : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. If $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a general point $b \in \partial Z_0$, then there exists by rescaling a holomorphic isometric embedding $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ with the image $Z := f(\Delta)$ that is not totally geodesic in Ω , such that all holomorphic tangent spaces $T_x(Z), x \in Z$, are equivalent under $Aut(\Omega)$.

Therefore, our goal is to show that Z is actually totally geodesic, and thus the original holomorphic isometry f_0 must be asymptotically totally geodesic at general points.

Total geodesy of local holo. curves on Tube domains

Let Ω be an irr. BSD. In 2002, Mok (*Comp. Math.* 2002) considered $S \subset \mathbb{P}T_{\Omega}$ defined as $S := \bigcup_{x \in \Omega} S_x$, where

 $\mathcal{S}_x := \{ [\eta] \in \mathbb{P}\mathcal{T}_x(\Omega) : \eta \text{ is of rank} < \operatorname{rank}(\Omega) \}.$

Then, $S_0 \subset \mathbb{P}T_0(\Omega)$ is of complex codimension $1 \iff \Omega$ is of tube type, i.e., Ω is one of the following

- **()** $D'_{m,m}, m \ge 1,$
- 2 D_n^{II} , $n \ge 4$ is even,
- **3** D_n^{III} , $n \ge 3$,
- **(5)** D^{VI} (27-dimensional exceptional domain pertaining to E_7).

Total geodesy of local holo. curves on Tube domains

Let Ω be an irr. BSD. In 2002, Mok (*Comp. Math.* 2002) considered $S \subset \mathbb{P}T_{\Omega}$ defined as $S := \bigcup_{x \in \Omega} S_x$, where

 $\mathcal{S}_{\mathsf{x}} := \{ [\eta] \in \mathbb{P}\mathcal{T}_{\mathsf{x}}(\Omega) : \eta \text{ is of } \mathsf{rank} < \operatorname{rank}(\Omega) \}.$

Then, $S_0 \subset \mathbb{P}T_0(\Omega)$ is of complex codimension $1 \iff \Omega$ is of tube type, i.e., Ω is one of the following

- (1) $D'_{m,m}, m \ge 1,$
- 2 D_n^{II} , $n \ge 4$ is even,
- **3** D_n^{III} , $n \ge 3$,
- **4** D_n^{IV} , $n \ge 3$,
- **(3)** D^{VI} (27-dimensional exceptional domain pertaining to E_7).

Proposition

Let Ω be an irr. BSD of tube type and of rank $r, Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent holomorphic tangent spaces spanned by holomorphic tangent vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of diagonal type, i.e. it is equivalent to the image of the map $\Delta \to \Omega, w \mapsto (w, \dots, w, \mathbf{0})$. **Proof:** $\pi : \mathbb{P}T_{\Omega} \to \Omega, L \to \mathbb{P}T_{\Omega}$ tautological line bundle. By [Mok, Comp. Math. 2002], the divisor line bundle $\operatorname{Div}(\mathcal{S})$ over $\mathbb{P}T_{\Omega}$ defined by the divisor $\mathcal{S} \subset \mathbb{P}T_{\Omega}$ is

$$\operatorname{Div}(\mathcal{S})\cong L^{-r}\otimes\pi^*E^2,$$

where *E* dual to $\mathcal{O}(1)$ on the compact dual Hermitian symmetric space X_c of Ω . By the Poincaré-Lelong equation

$$\frac{1}{2\pi}\sqrt{-1}\partial\overline{\partial}\log\|s\|^2 = rc_1(L,\hat{g}_0) - 2c_1(\pi^*E,\pi^*h_0) + [\mathcal{S}],$$

where \hat{g}_0 and h_0 are canonical metrics, s is a holomorphic section of $L^{-r} \otimes \pi^* E^2$ such that the zero divisor of s is S, [S] denotes the current of integration over S. Now, ||s|| only depends on the Aut (Ω) -isomorphism type of tangent vectors in $T_z(\Omega)$, $z \in \Omega$, i.e., ||s|| is invariant under Aut (Ω) . Consider the tautological lifting \hat{Z} of Z to $\mathbb{P}T_{\Omega}$, i.e.,

$$\hat{Z} := \{ [\alpha] \in \mathbb{P}T_x(\Omega) : x \in Z, \ T_x(Z) = \mathbb{C}\alpha \}.$$

Then, $\hat{Z} \cap S = \emptyset$.

Moreover, since Z has $Aut(\Omega)$ -equivalent holomorphic tangent spaces, $||s|| \equiv Constant > 0$ on \hat{Z} , and thus

$$0 \equiv rc_1(L, \hat{g}_0)|_{\hat{Z}} - 2c_1(\pi^* E, \pi^* h_0)|_{\hat{Z}}$$

so that

$$0 \equiv \mathit{rc}_1(\mathit{T}_Z, \mathit{g}_\Omega|_Z) - 2\mathit{c}_1(\mathit{E}, \mathit{h}_0)|_Z,$$

which is equivalent to the Gaussian curvature $K(x) = -\frac{2}{r}$, and thus the second fundamental form σ of Z is 0, $\sigma \equiv 0$.

Inserting a totally geodesic complex submanifold $\Omega' \supset Z$

Proposition

Let Ω be an irr. BSD, $Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$ -equivalent tangent spaces $T_z(Z) = \mathbb{C}\eta_z$. Suppose $\operatorname{rank}(\eta_z) =: k < r := \operatorname{rank}(\Omega)$. Then, there exists a holomorphic vector bundle $W \subset T_{\Omega}|_Z$ such that

 defining the second fundamental form τ : T_Z ⊗ W → T_Ω|_Z/W of W in T_Ω|_Z by

$$au_x(\eta\otimes\gamma):=(
abla_\eta\gamma)(x)\mod W_x$$

for $x \in Z$, $\eta \in T_x(Z)$ and $\gamma \in W_x$, τ is holomorphic, i.e., $\nabla_{\overline{\beta}}(\nabla_\eta \gamma)(x) \in W_x$ for any (1,0)-tangent vector β of Z at x.

2 We have $\tau|_{T_Z \otimes T_Z} \equiv 0$, and indeed $\tau \equiv 0$, i.e., W is parallel on Z.

③ there exists a totally geodesic complex submanifold Ω' ⊂ Ω such that Z ⊂ Ω' and $T_z(Ω') = W_z$ for all z ∈ Z.

4 Ω' is an irreducible BSD and $\operatorname{rank}(\Omega') = k < \operatorname{rank}(\Omega)$.

Construction of $W \rightarrow \text{Obtain } \Omega' \supset Z$ via the method of holo. foliations.

Remark: After this proposition, we still need to consider the case where $\operatorname{rank}(\eta_z) = r = \operatorname{rank}(\Omega)$, and Ω is not of tube type. If Ω is of tube type, then we may apply the propositions on pages 9 & 12. Thus, we need to have a similar result that forces $Z \subset \Omega'$ for some totally geodesic complex submanifold $\Omega' \subset \Omega$ such that $Z \subset \Omega'$, Ω' is of tube type and $\operatorname{rank}(\Omega') = r$.

Remark: After this proposition, we still need to consider the case where $\operatorname{rank}(\eta_z) = r = \operatorname{rank}(\Omega)$, and Ω is not of tube type. If Ω is of tube type, then we may apply the propositions on pages 9 & 12. Thus, we need to have a similar result that forces $Z \subset \Omega'$ for some totally geodesic complex submanifold $\Omega' \subset \Omega$ such that $Z \subset \Omega'$, Ω' is of tube type and $\operatorname{rank}(\Omega') = r$.

Construction of the vector bundle W. For any $z \in \Omega$ define the Hermitian bilinear form on $T_z(\Omega) \otimes \overline{T_z(\Omega)}$ by

$$Q_{z}(\alpha \otimes \overline{\beta}, \gamma \otimes \overline{\delta}) := R_{\alpha \overline{\gamma} \delta \overline{\beta}}(\Omega, g_{\Omega}).$$

In the following we simply write the curvature as $R_{\alpha\overline{\gamma}\delta\overline{\beta}} = R(\alpha,\overline{\gamma},\delta,\overline{\beta})$. Note that $Q_z(\alpha \otimes \overline{\beta}, \cdot) = R_{\alpha\overline{*}*\overline{\beta}}$. For any non-zero vector $\xi \in T_z(\Omega)$, we define the null space

$$\mathcal{N}_{\xi} := \{ v \in T_z(\Omega) : Q_z(\xi \otimes \overline{v}, \cdot) \equiv 0 \}.$$

For any $x \in Z$, we define

$$W_{x} := \{ v \in T_{x}(\Omega) : Q_{x}(v \otimes \overline{\zeta}, \cdot) \equiv 0 \quad \forall \zeta \in \mathcal{N}_{\eta} \},$$

where $\eta = \eta_x \in T_x(Z)$ is a non-zero vector spanning $T_x(Z)$. It is clear that $Q_x(\eta \otimes \overline{\zeta}, \cdot) \equiv 0$ for all $\zeta \in \mathcal{N}_\eta$ by definition, hence $T_x(Z) \subset W_x$.

Example. When $\Omega = D'_{p,q}$, $2 \le p \le q$, Ω is of rank p, we may write $\eta = \operatorname{diag}_{p,q}(\eta_1, \ldots, \eta_k, \mathbf{0})$

in the normal form with $\eta_1 \geq \cdots \geq \eta_k > 0$, where $1 \leq k < p$. Then,

$$\mathcal{N}_{\eta} = \left\{ egin{bmatrix} \mathbf{0} & \mathbf{0} \ \mathbf{0} & Z' \end{bmatrix} \in M(p,q;\mathbb{C}) : Z' \in M(p-k,q-k;\mathbb{C})
ight\}$$

Then, W_x is isomorphic to

$$\bigcap_{\zeta\in\mathcal{N}_{\eta}}\mathcal{N}_{\zeta}=\left\{\begin{bmatrix} Z'' & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}\in M(p,q;\mathbb{C}): Z''\in M(k,k;\mathbb{C})\right\}\cong T_{\mathbf{0}}(D'_{k,k}).$$

If k = p, i.e., $\eta = \operatorname{diag}_{p,q}(\eta_1, \ldots, \eta_p)$, then $\mathcal{N}_\eta = \mathbf{0}$ and

$$W_{x} \cong \bigcap_{\zeta \in \mathcal{N}_{\eta}} \mathcal{N}_{\zeta} = \mathcal{N}_{0} = T_{0}(\Omega),$$

so that $W_x = T_x(\Omega)$, which actually holds for any irr. BSD Ω of rank ≥ 2 whenever $\operatorname{rank}(\eta) = \operatorname{rank}(\Omega)$. If Ω is not of tube type, we couldn't apply the proposition on page 9 when η is of rank $r = \operatorname{rank}(\Omega)$.

Inserting a totally geodesic complex submanifold $\Omega' \supset Z$

Due to the issue mentioned at the end of the previous example, we will need the following proposition to deal with the case where η_x is of max. rank r. (The idea is similar to the previous proposition.)

Proposition

Let Ω be an irr. BSD, and $Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$ -equivalent tangent spaces $T_x(Z) = \mathbb{C}\eta_x$, $x \in Z$. Then, there exists a holomorphic vector subbundle $V \subset T_{\Omega}|_Z$ such that

- defining the second fundamental form $\tau : T_Z \otimes V \to T_{\Omega}|_Z/V$, τ is holomorphic.
- 2) $\tau \equiv 0$, i.e., V is parallel on Z.
- 3 there exists a totally geodesic complex submanifold Ω' ⊂ Ω such that Z ⊂ Ω', T_x(Ω') = V_x for all x ∈ Z,
- **(** Ω' is an irreducible BSD of tube type.

Inserting a totally geodesic complex submanifold $\Omega' \supset Z$

Due to the issue mentioned at the end of the previous example, we will need the following proposition to deal with the case where η_x is of max. rank r. (The idea is similar to the previous proposition.)

Proposition

Let Ω be an irr. BSD, and $Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$ -equivalent tangent spaces $T_x(Z) = \mathbb{C}\eta_x$, $x \in Z$. Then, there exists a holomorphic vector subbundle $V \subset T_{\Omega}|_Z$ such that

• defining the second fundamental form $\tau : T_Z \otimes V \to T_{\Omega}|_Z/V$, τ is holomorphic.

2)
$$\tau \equiv 0$$
, i.e., V is parallel on Z.

- 3 there exists a totally geodesic complex submanifold Ω' ⊂ Ω such that Z ⊂ Ω', T_x(Ω') = V_x for all x ∈ Z,
- **(** Ω' is an irreducible BSD of tube type.

For any $x \in Z$, $V = \bigcup_{x \in Z} V_x$ is defined by

$$V_x = [[T_x(Z), \overline{T_x(\Omega)}], T_x(Z)] \subset T_x(\Omega).$$

We use the Lie algebraic properties of $T_z(\Omega)$, $z \in \Omega \cong G_0/K$. 15/30

Recall $T_x(Z) = \mathbb{C}\eta_x$ and η_x is of rank $k \le r := \operatorname{rank}(\Omega) \ge 2$, $x \in Z$. If k < r, then we have $V_x = W_x$ for $x \in Z$, so that we can just identify V = W, and we can find an irreducible BSD Ω' of tube type and of rank k containing Z by the method before.

Recall $T_x(Z) = \mathbb{C}\eta_x$ and η_x is of rank $k \le r := \operatorname{rank}(\Omega) \ge 2$, $x \in Z$. If k < r, then we have $V_x = W_x$ for $x \in Z$, so that we can just identify V = W, and we can find an irreducible BSD Ω' of tube type and of rank k containing Z by the method before.

However, if k = r, then $V_x \subsetneq W_x = T_x(\Omega)$ for $x \in Z$. Actually, in this case $V_x = T_x(\Omega')$ for some totally geodesic complex submanifold $\Omega' \subset \Omega$ of the same rank as Ω , and Ω' is an irreducible BSD of tube type. Thus, the key point is to deal with the case where k = r and make use of V. We need some extra computations regarding those assertions on V. But most arguments in our consideration of W also work here.

From the previous two propositions, we can always find a totally geodesic complex submanifold $\Omega'\subset\Omega$ such that

 $\ \, {\bf 0} \ \, Z\subset \Omega',$

2 Ω' is an irreducible BSD of tube type and rank k,

③ $T_x(Z) = \mathbb{C}\eta_x$ with $\eta_x \in T_x(\Omega')$ being a rank-k vector.

This allows us to prove that $Z \subset \Omega'$ is totally geodesic by using the proposition on page 9, and thus we prove the asymptotic total geodesy of the local holomorphic curve $\mu(U \cap \Delta)$ exiting the irreducible BSD Ω .

From the previous two propositions, we can always find a totally geodesic complex submanifold $\Omega'\subset\Omega$ such that

 $\ \, {\bf 0} \ \, Z\subset \Omega',$

2 Ω' is an irreducible BSD of tube type and rank k,

③ $T_x(Z) = \mathbb{C}\eta_x$ with $\eta_x \in T_x(\Omega')$ being a rank-k vector.

This allows us to prove that $Z \subset \Omega'$ is totally geodesic by using the proposition on page 9, and thus we prove the asymptotic total geodesy of the local holomorphic curve $\mu(U \cap \Delta)$ exiting the irreducible BSD Ω .

When Ω is reducible, we can apply similar constructions of a holomorphic curve Z with $Aut(\Omega)$ -equivalent holomorphic tangent spaces, and the (holomorphic) vector bundles W and V over Z, etc.

2. Applications and some related known results

One of the consequences of our results is the following.

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, $F(D) \subset \Omega$ is a totally geodesic complex submanifold with respect to the Bergman metric ds_{Ω}^2 .

Remark: This theorem is due to L. Clozel (2007) in the cases of classical domains, and is stated in a survey article of N. Mok (2011).

2. Applications and some related known results

One of the consequences of our results is the following.

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, $F(D) \subset \Omega$ is a totally geodesic complex submanifold with respect to the Bergman metric ds_{Ω}^2 .

Remark: This theorem is due to L. Clozel (2007) in the cases of classical domains, and is stated in a survey article of N. Mok (2011).

Idea of the proof: As in the study of holo. isometries, the key point is to deal with the case where $D \cong \Delta$ is the unit disk by using N. Mok's proof of the Hermitian metric rigidity (in general we restrict F to any minimal disk of D). Now, we consider $D \cong \Delta$. Write σ for the (1,0)-part of second fundamental form of $(F(D), ds_{\Omega}^2|_{F(D)}) \subset (\Omega, ds_{\Omega}^2)$. By the Φ -equivariance of F, the norm $\|\sigma\|$ is constant. On the other hand, we have $\|\sigma(\mu(w))\| \to 0$ as $w \to b$, $w \in U \cap \Delta$, where μ is the local holomorphic curve defined in the theorem before. This forces $\|\sigma\| \equiv 0$, and thus $F(D) \subset \Omega$ is totally geodesic.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain and $X_{\Gamma} := \Omega/\Gamma$ with the universal covering map $\pi : \Omega \to X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_0(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y := \overline{\pi(Z)}^{\operatorname{Zar}}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain and $X_{\Gamma} := \Omega/\Gamma$ with the universal covering map $\pi : \Omega \to X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_0(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y := \overline{\pi(Z)}^{\operatorname{Zar}}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic. It is known that $X_{\Gamma} = \Omega/\Gamma$ is a quasi-projective variety even when Γ is not necessarily arithmetic. An algebraic subset of Ω is $V \cap \Omega$ for some algebraic subvariety $V \subset \widehat{\Omega}$, where $\widehat{\Omega}$ is the compact dual Hermitian symmetric space of Ω , which is a projective manifold, and $\Omega \subset \widehat{\Omega}$ can be identified as an open subset via the Borel embedding.

The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann -Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain and $X_{\Gamma} := \Omega/\Gamma$ with the universal covering map $\pi : \Omega \to X_{\Gamma}$, where $\Gamma \subset \operatorname{Aut}_0(\Omega)$ is a torsion-free lattice. If $Z \subset \Omega$ is an algebraic subset, then the Zariski closure $Y := \overline{\pi(Z)}^{\operatorname{Zar}}$ of $\pi(Z)$ in X_{Γ} is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic. It is known that $X_{\Gamma} = \Omega/\Gamma$ is a quasi-projective variety even when Γ is not necessarily arithmetic. An algebraic subset of Ω is $V \cap \Omega$ for some algebraic subvariety $V \subset \widehat{\Omega}$, where $\widehat{\Omega}$ is the compact dual Hermitian symmetric space of Ω , which is a projective manifold, and $\Omega \subset \widehat{\Omega}$ can be identified as an open subset via the Borel embedding.

The above conjecture has been solved by (1) Klingler-Ullmo-Yafaev (2016) if X_{Γ} is a pure Shimura variety, i.e., Γ is arithmetic, and by (2) N. Mok (*Compos. Math.* 2019) if $\Omega \cong \mathbb{B}^N$ (Γ is not necessarily arithmetic). The general case is still open.

On the other hand, Ziyang Gao (2017) also extended this result, which is called the Ax-Lindemann principle, to any mixed Shimura variety [See a survey article of Klingler-Ullmo-Yafaev (2018)].

By the Margulis Arithmeticity Theorem, Γ is arithmetic if $\operatorname{rank}(\Omega) \geq 2$ and Ω/Γ is an irreducible quotient (i.e., Γ is irreducible).

In particular, the hyperbolic Ax-Lindemann-Weierstrass conjecture is solved if Γ is irreducible, which holds true if Ω is irreducible. Note that in general there could be non-arithmetic quotients if Ω has some irreducible factor $\cong \mathbb{B}^n$ (e.g. for n = 2 or 3).

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y} := Z/\check{\Gamma}$ is compact (without boundary). Then, $Z \subset \Omega$ is totally geodesic.

Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y} := Z/\check{\Gamma}$ is compact (without boundary). Then, $Z \subset \Omega$ is totally geodesic.

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y} := Z/\check{\Gamma}$ is compact (without boundary). Then, $Z \subset \Omega$ is totally geodesic.

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

As a consequence, we have the following theorem that generalizes the cocompact case of Ullmo-Yafaev (2011) which characterizes totally geodesic subsets of Hermitian locally symmetric spaces of finite volume as the unique bi-algebraic subvarieties (thus yielding a reduction of the hyperbolic Ax-Lindemann-Weierstrass conjecture).

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a not necessarily arithmetic torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Y \subset X_{\Gamma}$ be an irr. subvariety, and $Z \subset \Omega$ be an irr. component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is a totally geodesic complex submanifold.

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $Z \subset \Omega$ be an irr. algebraic subset. Suppose \exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $\check{Y} := Z/\check{\Gamma}$ is compact (without boundary). Then, $Z \subset \Omega$ is totally geodesic.

Problem 1: Generalize this theorem to the case where \check{Y} is quasi-projective and noncompact.

As a consequence, we have the following theorem that generalizes the cocompact case of Ullmo-Yafaev (2011) which characterizes totally geodesic subsets of Hermitian locally symmetric spaces of finite volume as the unique bi-algebraic subvarieties (thus yielding a reduction of the hyperbolic Ax-Lindemann-Weierstrass conjecture).

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let $\Omega \Subset \mathbb{C}^N$ be a BSD, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a not necessarily arithmetic torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Y \subset X_{\Gamma}$ be an irr. subvariety, and $Z \subset \Omega$ be an irr. component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is a totally geodesic complex submanifold.

This theorem could be generalized to the case where Γ is a lattice (not necessarily cocompact) provided that Problem 1 is solved.

We first assume that $\check{Y} = Z/\check{\Gamma}$ is quasi-projective instead of compact. Let H_0 be the identity component of $\operatorname{Stab}(Z) := \{g \in G_0 : g(Z) = Z\}$, where $G_0 := \operatorname{Aut}_0(\Omega)$. We show that $H_0 \subset G_0$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.

We first assume that $\check{Y} = Z/\check{\Gamma}$ is quasi-projective instead of compact. Let H_0 be the identity component of $\operatorname{Stab}(Z) := \{g \in G_0 : g(Z) = Z\}$, where $G_0 := \operatorname{Aut}_0(\Omega)$. We show that $H_0 \subset G_0$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.

Moreover, $\hat{\Gamma} := H_0 \cap \check{\Gamma} \subset \check{\Gamma}$ is a subgroup of finite index. In particular, we have a finite unramified covering map $Z/\hat{\Gamma} \to Z/\check{\Gamma}$. Hence, if $Z/\check{\Gamma}$ is compact, then so is $Z/\hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z/\hat{\Gamma}$ instead of $Z/\check{\Gamma}$.

We first assume that $\check{Y} = Z/\check{\Gamma}$ is quasi-projective instead of compact. Let H_0 be the identity component of $\operatorname{Stab}(Z) := \{g \in G_0 : g(Z) = Z\}$, where $G_0 := \operatorname{Aut}_0(\Omega)$. We show that $H_0 \subset G_0$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.

Moreover, $\hat{\Gamma} := H_0 \cap \check{\Gamma} \subset \check{\Gamma}$ is a subgroup of finite index. In particular, we have a finite unramified covering map $Z/\hat{\Gamma} \to Z/\check{\Gamma}$. Hence, if $Z/\check{\Gamma}$ is compact, then so is $Z/\hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z/\hat{\Gamma}$ instead of $Z/\check{\Gamma}$.

If $Z/\check{\Gamma}$ is quasi-projective, then so is $Z/\hat{\Gamma}$ by Riemann's existence theorem and the fact that $\check{\Gamma}$ acts on Z without fixed points (cf. Remark 1.3 on p. 2082 of [R. Friedman & R. Laza, *Duke Math. J.* 2013]). R. Friedman & R. Laza have also pointed out that a finite ramified cover of a quasiprojective variety need not be quasiprojective in general.

We first assume that $\check{Y} = Z/\check{\Gamma}$ is quasi-projective instead of compact. Let H_0 be the identity component of $\operatorname{Stab}(Z) := \{g \in G_0 : g(Z) = Z\}$, where $G_0 := \operatorname{Aut}_0(\Omega)$. We show that $H_0 \subset G_0$ is real algebraic group of positive dimension. Actually, since $\operatorname{Stab}(Z)$ is a real algebraic group and $\check{\Gamma} \subset \operatorname{Stab}(Z)$, we only need to show that $\check{\Gamma}$ is an infinite group by the maximum principle.

Moreover, $\hat{\Gamma} := H_0 \cap \check{\Gamma} \subset \check{\Gamma}$ is a subgroup of finite index. In particular, we have a finite unramified covering map $Z/\hat{\Gamma} \to Z/\check{\Gamma}$. Hence, if $Z/\check{\Gamma}$ is compact, then so is $Z/\hat{\Gamma}$. In the proof, we will consider the compact complex manifold $Z/\hat{\Gamma}$ instead of $Z/\check{\Gamma}$.

If $Z/\check{\Gamma}$ is quasi-projective, then so is $Z/\hat{\Gamma}$ by Riemann's existence theorem and the fact that $\check{\Gamma}$ acts on Z without fixed points (cf. Remark 1.3 on p. 2082 of [R. Friedman & R. Laza, *Duke Math. J.* 2013]). R. Friedman & R. Laza have also pointed out that a finite ramified cover of a quasiprojective variety need not be quasiprojective in general.

We have the complexification $H \subset G := G_0^{\mathbb{C}}$ of H_0 , and H is a complex algebraic group. Here, $X_c = G/P$ is the compact dual Hermitian symmetric space of Ω and we can identify $\Omega \subset X_c$ as an open subset via the Borel embedding, where $P \subset G$ is some parabolic subgroup.

Proposition

For $x \in Z$, $Z \subset Hx \cap \Omega$ is an irreducible component. (Recall $\Omega \in \mathbb{C}^{N}$.)

Proposition

For $x \in Z$, $Z \subset Hx \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^N$.)

Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_c$. If $Hx \cap Z \subsetneq Z$, then we can find a Zariski closed subset $E \subsetneq Z$ (i.e., E is a finite union of irreducible components of $\hat{E} \cap \Omega$ for some projective subvariety $\hat{E} \subset X_c$) such that $Hx \cap Z \subset E$, and a polynomial p(z) in $z \in \mathbb{C}^N$ such that $p|_{\hat{E} \cap \mathbb{C}^N} \equiv 0$ and $p|_{\hat{Z} \cap \mathbb{C}^N} \not\equiv 0$.

Proposition

For $x \in Z$, $Z \subset Hx \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^N$.)

Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_c$. If $Hx \cap Z \subsetneq Z$, then we can find a Zariski closed subset $E \subsetneq Z$ (i.e., E is a finite union of irreducible components of $\hat{E} \cap \Omega$ for some projective subvariety $\hat{E} \subset X_c$) such that $Hx \cap Z \subset E$, and a polynomial p(z) in $z \in \mathbb{C}^N$ such that $p|_{\hat{E} \cap \mathbb{C}^N} \equiv 0$ and $p|_{\hat{Z} \cap \mathbb{C}^N} \not\equiv 0$. Define $\Phi : \Omega \to \mathbb{R}$ by $\Phi(z) := \sup\{|p(\gamma(z))| : \gamma \in \check{\Gamma}\}$. Note that $|p(\gamma(z))| \le \sup_{\overline{\Omega}} |p| < +\infty$. This will give a nonconstant bounded plurisubharmonic function on $\check{Y} = Z/\check{\Gamma}$, a plain contradiction by the maximum principle and the Riemann extension theorem.

Proposition

For $x \in Z$, $Z \subset Hx \cap \Omega$ is an irreducible component. (Recall $\Omega \Subset \mathbb{C}^N$.)

Outline of the proof: By definition, $Z \subset \hat{Z} \cap \Omega$ is an irreducible component for some irreducible projective subvariety $\hat{Z} \subset X_c$. If $Hx \cap Z \subseteq Z$, then we can find a Zariski closed subset $E \subseteq Z$ (i.e., E is a finite union of irreducible components of $\widehat{E} \cap \Omega$ for some projective subvariety $\widehat{E} \subset X_c$) such that $Hx \cap Z \subset E$, and a polynomial p(z) in $z \in \mathbb{C}^N$ such that $p|_{\widehat{F} \cap \mathbb{C}^N} \equiv 0$ and $p|_{\widehat{T} \cap \mathbb{C}^N} \not\equiv 0$. Define $\Phi : \Omega \to \mathbb{R}$ by $\Phi(z) := \sup\{|p(\gamma(z))| : \gamma \in \check{\Gamma}\}$. Note that $|p(\gamma(z))| \leq \sup_{\overline{\Omega}} |p| < +\infty$. This will give a nonconstant bounded plurisubharmonic function on $\check{Y}=Z/\check{\Gamma}$, a plain contradiction by the maximum principle and the Riemann extension theorem. Since H acts algebraically on X_c , we have $\overline{Hx} \cap Z = Z$. If $Hx \cap Z \subsetneq Z$, then letting $y \in Z \setminus Hx$, we still get $\overline{Hy} \cap Z = Z$ as before, but then this contradicts with the fact that Hxand Hy are disjoint orbits. Hence, $Hx \cap Z = Z$ for any $x \in Z$.

The previous proposition implies that $Z \subset \Omega$ is smooth by the smoothness of Hx and that $\Omega \subset X_c$ is an open subset. We also have the (real) orbit $H_0x \subset Z \subset Hx$. Since $\check{Y} = Z/\check{\Gamma}$ (equipped with the Kähler metric $g_{\check{Y}}$ induced from $ds_{\Omega}^2|_Z$) is a compact Kähler manifold with ample canonical line bundle $K_{\check{Y}}$, we may make use of a consequence of Nadel's semisimplicity theorem [Nadel, *Ann. of Math.* 1990] to obtain that H_0 is a semisimple Lie group of the noncompact type (i.e., without compact factors).

Theorem (Nadel's semisimplicity theorem , Ann. of Math. 132 (1990))

Let X be a compact Kähler manifold with ample canonical line bundle K_X , and denote by $\pi: \widetilde{X} \to X$ the uniformization map. Then, $\operatorname{Aut}_0(\widetilde{X})$ is a semisimple Lie group of the noncompact type.

The previous proposition implies that $Z \subset \Omega$ is smooth by the smoothness of H_X and that $\Omega \subset X_c$ is an open subset. We also have the (real) orbit $H_0 x \subset Z \subset H_X$. Since $\check{Y} = Z/\check{\Gamma}$ (equipped with the Kähler metric $g_{\check{Y}}$ induced from $ds_{\Omega}^2|_Z$) is a compact Kähler manifold with ample canonical line bundle $K_{\check{Y}}$, we may make use of a consequence of Nadel's semisimplicity theorem [Nadel, *Ann. of Math.* 1990] to obtain that H_0 is a semisimple Lie group of the noncompact type (i.e., without compact factors).

Theorem (Nadel's semisimplicity theorem , Ann. of Math. 132 (1990))

Let X be a compact Kähler manifold with ample canonical line bundle K_X , and denote by $\pi: \widetilde{X} \to X$ the uniformization map. Then, $\operatorname{Aut}_0(\widetilde{X})$ is a semisimple Lie group of the noncompact type.

Now, H_0 is a semisimple Lie group of the noncompact type. To prove the main theorem, we will show that $Z = H_0 x$ is Riemannian symmetric of the semisimple and noncompact type by showing that $\dim_{\mathbb{R}}(H_0 x) = \dim_{\mathbb{R}}(Z)$ and $(H_0)_x \subset H_0$ is the maximal compact subgroup. In particular, we see that $Z \subset \Omega$ is a totally geodesic complex submanifold, and the main theorem will follow.

Outline of the proof: We have $H_0 x \cong H_0/(H_0)_x$, where $(H_0)_x := \{h \in H_0 : h(x) = x\}$. Note that $(H_0)_x \subset \{g \in G_0 : g(x) = x\} =: K_x$ and $K_x \subset G_0$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_0$ such that $(H_0)_x \subset L$, and $H_0/L \cong \mathbb{R}^n$ is a diffeomorphism for some n.

Outline of the proof: We have $H_0 x \cong H_0/(H_0)_x$, where $(H_0)_x := \{h \in H_0 : h(x) = x\}$. Note that $(H_0)_x \subset \{g \in G_0 : g(x) = x\} =: K_x$ and $K_x \subset G_0$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_0$ such that $(H_0)_x \subset L$, and $H_0/L \cong \mathbb{R}^n$ is a diffeomorphism for some *n*. Consider the $K(\hat{\Gamma}, 1)$'s (i.e., Eilenberg-MacLane spaces X with $\pi_1(X) \cong \hat{\Gamma}$ and $\pi_k(X)$ is trivial for $k \neq 1$)

$$g: S_{\widehat{\Gamma}} := \widehat{\Gamma} \setminus H_0 / L \hookrightarrow \widehat{\Gamma} \setminus \Omega \cong \Omega / \widehat{\Gamma} =: X_{\widehat{\Gamma}}$$

and the inclusion map $\iota : \hat{Y} := Z/\hat{\Gamma} \hookrightarrow X_{\hat{\Gamma}}$. We have the finite covering $\hat{Y} \to \check{Y}$ and \check{Y} is compact (without boundary), thus \hat{Y} is compact.

Outline of the proof: We have $H_0 x \cong H_0/(H_0)_x$, where $(H_0)_x := \{h \in H_0 : h(x) = x\}$. Note that $(H_0)_x \subset \{g \in G_0 : g(x) = x\} =: K_x$ and $K_x \subset G_0$ is known to be a maximal compact subgroup. Now, there is a maximal compact subgroup $L \subset H_0$ such that $(H_0)_x \subset L$, and $H_0/L \cong \mathbb{R}^n$ is a diffeomorphism for some *n*. Consider the $K(\hat{\Gamma}, 1)$'s (i.e., Eilenberg-MacLane spaces X with $\pi_1(X) \cong \hat{\Gamma}$ and $\pi_k(X)$ is trivial for $k \neq 1$)

$$g: S_{\hat{\Gamma}} := \hat{\Gamma} \setminus H_0 / L \hookrightarrow \hat{\Gamma} \setminus \Omega \cong \Omega / \hat{\Gamma} =: X_{\hat{\Gamma}}$$

and the inclusion map $\iota: \hat{Y} := Z/\hat{\Gamma} \hookrightarrow X_{\hat{\Gamma}}$. We have the finite covering $\hat{Y} \to \check{Y}$ and \check{Y} is compact (without boundary), thus \hat{Y} is compact. Now, $g_*: \pi_1(S_{\hat{\Gamma}}) \to \pi_1(X_{\hat{\Gamma}})$ is a group isomorphism, and $\iota_*: \pi_1(\hat{Y}) \to \pi_1(X_{\hat{\Gamma}})$ is a group homomorphism. Consider the group homomorphism

$$(g_*)^{-1}\circ\iota_*:\pi_1(\hat{Y})\to\pi_1(S_{\widehat{\Gamma}}).$$

Then, there is a continuous map $f: \hat{Y} \to S_{\hat{\Gamma}}$ such that

$$f_* = (g_*)^{-1} \circ \iota_*$$

by Whitehead's theorem. Letting $g \circ f \, : \, \hat{Y} o X_{\hat{\Gamma}}$, we have

$$(g \circ f)_* = g_* \circ f_* = \iota_*.$$

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$g \circ f : \hat{Y} \to X_{\hat{\Gamma}}, \qquad \iota : \hat{Y} \hookrightarrow X_{\hat{\Gamma}}.$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$(g \circ f)^* = \iota^* : H^p_{\mathrm{dR}}(X_{\widehat{\Gamma}}) \to H^p_{\mathrm{dR}}(\hat{Y})$$

for all p.

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$g \circ f : \hat{Y} \to X_{\hat{\Gamma}}, \qquad \iota : \hat{Y} \hookrightarrow X_{\hat{\Gamma}}.$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$(g \circ f)^* = \iota^* : H^p_{\mathrm{dR}}(X_{\widehat{\Gamma}}) \to H^p_{\mathrm{dR}}(\hat{Y})$$

for all p. Write $\hat{\omega}$ for the Kähler form of $X_{\hat{\Gamma}} = \Omega/\hat{\Gamma}$ with the Kähler metric $g_{X_{\hat{\Gamma}}}$ induced from ds_{Ω}^2 . Write $s := \dim_{\mathbb{C}}(\hat{Y}) = \dim_{\mathbb{C}}(Z)$. Then,

$$u^* rac{\hat{\omega}^s}{s!} = (g \circ f)^* rac{\hat{\omega}^s}{s!} + d\eta_0$$

and $\iota^* \frac{\hat{\omega}^s}{s!}$ is the volume form of the compact Kähler manifold $(\hat{Y}, g_{X_{\hat{\Gamma}}}|_{\hat{Y}})$.

By Whitehead's theorem and Whitney's approximation theorem, we may choose f to be smooth and we have the homotopic smooth maps

$$g \circ f : \hat{Y} \to X_{\hat{\Gamma}}, \qquad \iota : \hat{Y} \hookrightarrow X_{\hat{\Gamma}}.$$

These two smooth maps induce the same pullback maps on the de Rham cohomology groups

$$(g \circ f)^* = \iota^* : H^p_{\mathrm{dR}}(X_{\widehat{\Gamma}}) \to H^p_{\mathrm{dR}}(\hat{Y})$$

for all p. Write $\hat{\omega}$ for the Kähler form of $X_{\hat{\Gamma}} = \Omega/\hat{\Gamma}$ with the Kähler metric $g_{X_{\hat{\Gamma}}}$ induced from ds_{Ω}^2 . Write $s := \dim_{\mathbb{C}}(\hat{Y}) = \dim_{\mathbb{C}}(Z)$. Then,

$$\iota^* \frac{\hat{\omega}^s}{s!} = (g \circ f)^* \frac{\hat{\omega}^s}{s!} + d\eta_0$$

and $\iota^* \frac{\hat{\omega}^s}{s!}$ is the volume form of the compact Kähler manifold $(\hat{Y}, g_{X_{\hat{\Gamma}}}|_{\hat{Y}})$. If dim_R $(S_{\hat{\Gamma}}) < 2s$, then $g^* \hat{\omega}^s = 0$ so that

$$\iota^*\frac{\hat{\omega}^s}{s!}=d\eta_0$$

on \hat{Y} , and we would have $\operatorname{Vol}(\hat{Y}) = 0$ by Stokes' Theorem, a plain contradiction. Therefore, dim_{\mathbb{R}}($S_{\hat{\Gamma}}$) $\geq 2s$.

We have

$$\dim_{\mathbb{R}}(H_0x) \geq \dim_{\mathbb{R}}(H_0/L) = \dim_{\mathbb{R}}(S_{\widehat{\Gamma}}) \geq 2s = \dim_{\mathbb{R}}(Z)$$

Thus, $\dim_{\mathbb{R}}(H_0x) = \dim_{\mathbb{R}}(Z)$ so that $Z = H_0x \cong H_0/L$ is Riemannian symmetric of the semisimple and noncompact type. Since Z is a complex manifold, Z is indeed a Hermitian symmetric space of noncompact type. By the theorem on page 18 about equivariant holomorphic maps, we obtain the total geodesy of Z in Ω .

Remark: In this proof, one may consider the case where $\check{Y} = Z/\check{\Gamma}$ is only assumed quasi-projective so that $\hat{Y} = Z/\hat{\Gamma}$ is also quasi-projective. Then, we still obtain $\iota^* \frac{\hat{\omega}^s}{s!} = d\eta_0$. However, we could not apply Stokes' Theorem in the in order to do the dimension estimates as in the case where \check{Y} (resp. \hat{Y}) is compact.

We have

$$\dim_{\mathbb{R}}(H_0x) \geq \dim_{\mathbb{R}}(H_0/L) = \dim_{\mathbb{R}}(S_{\widehat{\Gamma}}) \geq 2s = \dim_{\mathbb{R}}(Z)$$

Thus, $\dim_{\mathbb{R}}(H_0x) = \dim_{\mathbb{R}}(Z)$ so that $Z = H_0x \cong H_0/L$ is Riemannian symmetric of the semisimple and noncompact type. Since Z is a complex manifold, Z is indeed a Hermitian symmetric space of noncompact type. By the theorem on page 18 about equivariant holomorphic maps, we obtain the total geodesy of Z in Ω .

Remark: In this proof, one may consider the case where $\check{Y} = Z/\check{\Gamma}$ is only assumed quasi-projective so that $\hat{Y} = Z/\hat{\Gamma}$ is also quasi-projective. Then, we still obtain $\iota^* \frac{\hat{\omega}^s}{s!} = d\eta_0$. However, we could not apply Stokes' Theorem in the in order to do the dimension estimates as in the case where \check{Y} (resp. \hat{Y}) is compact. Another issue is that if $\check{Y} = Z/\check{\Gamma}$ is quasi-projective and noncompact, then we could not apply Nadel's semisimplicity theorem to show that H_0 is semisimple. However, there could be other ways to prove the semisimplicity of H_0 .

References: Asymptotic total geodesy of local holo. curves

S.-T. Chan & N. Mok: Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets, J. Differential Geom. **120** (2022), no. 1, 1–49.

- N. Mok:
 - Characterization of certain holomorphic geodesic cycles on quotients of bounded symmetric domains in terms of tangent subspaces, Compositio Math. 132 (2002), no. 3, 289–309.
 - On the asymptotic behavior of holomorphic isometries of the Poincaré disk into bounded symmetric domains, Acta Math. Sci. Ser. B (Engl. Ed.) 29 (2009), no. 4, 881–902.
 - Solution Content in the second symmetric domain in its Harish-Chandra realization exiting at regular points of the boundary, Pure Appl. Math. Q. 10 (2014), no. 2, 259–288.

N. Mok & S.-C. Ng: Second fundamental forms of holomorphic isometries of the Poincaré disk into bounded symmetric domains and their boundary behavior along the unit circle, Sci. China Ser. A **52** (2009), no. 12, 2628–2646.

References: Hyperbolic Ax-Lindemann-Weierstrass Conj.

Ziyang Gao: Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math. **732** (2017), 85–146.

B. Klingler, E. Ullmo & A. Yafaev:

- The hyperbolic Ax-Lindemann-Weierstrass conjecture, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 333–360.
- Ø Bi-algebraic geometry and the André-Oort conjecture, Algebraic geometry: Salt Lake City 2015, 319–359. Proc. Sympos. Pure Math., 97.2 American Mathematical Society, Providence, RI, 2018.

N. Mok: Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball, Compos. Math. **155** (2019), 2129–2149.

E. Ullmo & A. Yafaev: *A characterization of special subvarieties*, Mathematika **57** (2011), 263–273.

Thank you!