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1. Asymptotic behaviour of local holomorphic curves

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let Ω ⋐ CN be a bounded symmetric domain (BSD) equipped with the
Bergman metric ds2Ω. Let µ : U := B1(b0, ϵ) → CN , ϵ > 0, be a holomorphic
embedding such that µ(U ∩∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω, where b0 ∈ ∂∆.
Denote by σ(z) the second fundamental form of µ(U ∩∆) in (Ω, ds2Ω) at
z = µ(w). Then, for a general point b ∈ U ∩ ∂∆ we have

lim
w∈U∩∆, w→b

∥σ(µ(w))∥ = 0.

Here, a general point b on U ∩ ∂∆ means all b on the circular arc U ∩ ∂∆
except for a discrete subset of U ∩ ∂∆.

For the last statement we say for short
that µ is asymptotically totally geodesic at a general point b ∈ ∂∆.
Moreover, we have not obtained a precise estimate on ∥σ(µ(w))∥.
However, this theorem was obtained by N. Mok (Pure and Appl. Math. Q.
2014) for µ exiting at points in Reg(∂Ω) with the precise estimate of
∥σ(µ(w))∥, namely, for any neighborhood U0 of the general point b in C such
that U0 ⋐ U and ∥σ(µ(w))∥2 is real-analytic on U0, there exists a real constant
C > 0 depending on U0 such that

∥σ(µ(w))∥ ≤ Cδ(w)

for any w ∈ U0 ∩∆.
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By the fact that holo. isometries extend holomorphically around a general
boundary point, we have

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let f : (∆, λds2∆) → (Ω, ds2Ω) be a holomorphic isometric embedding, where
λ > 0 is a real constant and Ω ⋐ CN is a bounded symmetric domain. Then, f
is asymptotically totally geodesic at a general point b ∈ ∂∆.

Remark: This theorem was stated in the survey article of N. Mok (2011) where
it was indicated that the proof relies on the Poincaré-Lelong equation.

A
theorem of Mok (2009) & Mok-Ng (2009) says that if such a holomorphic
isometry f is not totally geodesic and f is asymptotically totally geodesic, then
∥σ(f (w))∥2 vanishes to the order 2 or 1 at a general point b ∈ ∂∆, i.e., locally
around b,

φ(w) := ∥σ(f (w))∥2 ≤ Cδ(w)q

for some constant C > 0, where q = 2 or q = 1, δ(w) := 1− |w |. Define
E(f ) := {b ∈ ∂∆ : φ extends real-analytically around b}. It is still unknown if
there exists a holo. isometry f : (∆, λds2∆) → (Ω, ds2Ω), b ∈ E(f ), and an open
neighborhood Ub of b ∈ ∂∆ in C with φ extending real-analytically on Ub, such
that

C ′δ(w)2 < φ(w) = ∥σ(f (w))∥2 ≤ Cδ(w)

holds on Ub ∩∆ for some real constants C ,C ′ > 0.
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Holomorphic isometries via the Rescaling Argument

We will first prove the theorem when Ω ⋐ CN is an irreducible bounded
symmetric domain of rank r . Let µ : U = B1(b0, ϵ) → CN , ϵ > 0, be a
holomorphic embedding such that µ(U ∩∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω,
where b0 ∈ ∂∆. For a general point b ∈ U ∩ ∂∆, ∥σ(µ(w))∥2 is
real-analytic around b by Mok (2009).

Let {wk}+∞
k=1 be a sequence of points in U ∩∆ such that wk → b as

k → +∞. Let φk ∈ Aut(∆) be the map

φk(ζ) =
ζ + wk

1 + wkζ
(φk(0) = wk)

and Φk ∈ Aut(Ω) be such that Φk(µ(wk)) = 0, i.e., Φk(µ(φk(0))) = 0,
for k = 1, 2, 3, . . ..

Consider the sequence {Φk ◦ (µ ◦ φk)}+∞
k=1 of germs of holomorphic maps

from (∆; 0) to (Ω; 0). All Φk ◦ (µ ◦ φk) are defined on some small open

neighborhood U ′ := B1(0, ϵ′) ⊂ ∆ of 0 in ∆, where ϵ′ > 0.
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Embedded ∆ with Aut(Ω)-equi. holo. tangents

Lemma

Let b ∈ U ∩ ∂∆ be a general point. Choose some sequence {wk}+∞
k=1 of

points in U ∩∆ converging to a general point b ∈ U ∩ ∂∆ as k → +∞.
Then, after shrinking U ′ if necessary, there is a subsequence of
{µ̃k := Φk ◦ (µ ◦ φk)}+∞

k=1 which converges to some holomorphic map µ̃
on U ′ such that µ̃ : (∆,m0g∆; 0) → (Ω, gΩ; 0) is a germ of holomorphic
isometry from some integer m0 ≥ 1.

Moreover, µ̃ may be chosen such that ∥σ̃(µ̃(w))∥2 ≡ ∥σ(µ(b))∥2 is a
constant function. µ̃ can be extended to a global holomorphic isometry,
still denoted by µ̃.
Write Z := µ̃(∆). At each point w ∈ ∆, we choose a unit tangent vector
η(z) ∈ Tz(Z ), z := µ̃(w), and write ξz := (ξ1z , . . . , ξ

r
z) for the normal

form of η(z), where ξz ∈ T0(Ω) is tangent to the standard maximal
polydisk Π ∼= ∆r in Ω, and there exists γ ∈ Aut(Ω) such that (a)
γ(z) = 0, (b) dγ(η(z)) = ξz , and (c) ξ1z ≥ · · · ≥ ξrz ≥ 0 are real
numbers. Then, we may further assume that ξjz = ξj , 1 ≤ j ≤ r , are
constants independent of z.

6 / 30



Embedded ∆ with Aut(Ω)-equi. holo. tangents

Lemma

Let b ∈ U ∩ ∂∆ be a general point. Choose some sequence {wk}+∞
k=1 of

points in U ∩∆ converging to a general point b ∈ U ∩ ∂∆ as k → +∞.
Then, after shrinking U ′ if necessary, there is a subsequence of
{µ̃k := Φk ◦ (µ ◦ φk)}+∞

k=1 which converges to some holomorphic map µ̃
on U ′ such that µ̃ : (∆,m0g∆; 0) → (Ω, gΩ; 0) is a germ of holomorphic
isometry from some integer m0 ≥ 1.
Moreover, µ̃ may be chosen such that ∥σ̃(µ̃(w))∥2 ≡ ∥σ(µ(b))∥2 is a
constant function. µ̃ can be extended to a global holomorphic isometry,
still denoted by µ̃.

Write Z := µ̃(∆). At each point w ∈ ∆, we choose a unit tangent vector
η(z) ∈ Tz(Z ), z := µ̃(w), and write ξz := (ξ1z , . . . , ξ

r
z) for the normal

form of η(z), where ξz ∈ T0(Ω) is tangent to the standard maximal
polydisk Π ∼= ∆r in Ω, and there exists γ ∈ Aut(Ω) such that (a)
γ(z) = 0, (b) dγ(η(z)) = ξz , and (c) ξ1z ≥ · · · ≥ ξrz ≥ 0 are real
numbers. Then, we may further assume that ξjz = ξj , 1 ≤ j ≤ r , are
constants independent of z.

6 / 30



Embedded ∆ with Aut(Ω)-equi. holo. tangents

Lemma

Let b ∈ U ∩ ∂∆ be a general point. Choose some sequence {wk}+∞
k=1 of

points in U ∩∆ converging to a general point b ∈ U ∩ ∂∆ as k → +∞.
Then, after shrinking U ′ if necessary, there is a subsequence of
{µ̃k := Φk ◦ (µ ◦ φk)}+∞

k=1 which converges to some holomorphic map µ̃
on U ′ such that µ̃ : (∆,m0g∆; 0) → (Ω, gΩ; 0) is a germ of holomorphic
isometry from some integer m0 ≥ 1.
Moreover, µ̃ may be chosen such that ∥σ̃(µ̃(w))∥2 ≡ ∥σ(µ(b))∥2 is a
constant function. µ̃ can be extended to a global holomorphic isometry,
still denoted by µ̃.
Write Z := µ̃(∆). At each point w ∈ ∆, we choose a unit tangent vector
η(z) ∈ Tz(Z ), z := µ̃(w), and write ξz := (ξ1z , . . . , ξ

r
z) for the normal

form of η(z), where ξz ∈ T0(Ω) is tangent to the standard maximal
polydisk Π ∼= ∆r in Ω, and there exists γ ∈ Aut(Ω) such that (a)
γ(z) = 0, (b) dγ(η(z)) = ξz , and (c) ξ1z ≥ · · · ≥ ξrz ≥ 0 are real
numbers. Then, we may further assume that ξjz = ξj , 1 ≤ j ≤ r , are
constants independent of z.

6 / 30



Remark: It is clear that ∃ k , 1 ≤ k ≤ r , such that ξ1z ≥ · · · ≥ ξkz > 0,
and if k ≤ r − 1, then ξjz = 0 for all j ≥ k + 1. Then, k is called the rank
of η(z), and k is independent of z by the lemma.
With this lemma, to obtain the asymptotic total geodesy of µ, it suffices
to prove that ∥σ̃∥2 ≡ 0, equivalently, Z ⊂ Ω is totally geodesic.

Rank of a tangent vector. ∀ non-zero vector v ∈ Tz(Ω) we have the
normal form of v given by dγz(v) = (a1, . . . , ar ) that is tangent to the
maximal polydisk ∼= ∆r at 0, and a1 ≥ · · · ≥ ar ≥ 0 are real numbers,
where γ ∈ Aut(Ω) with γ(z) = 0 (cf. Mok 1989).

One may first get (w1, . . . ,wr ) ∈ T0(Π) ∼= T0(∆
r ) for wj ∈ C, 1 ≤ j ≤ r ,

but then we may apply the action of (S1)r on ∆r (as automorphisms) to

get e
√
−1θjwj = aj ≥ 0 for some θj ∈ [0, 2π), 1 ≤ j ≤ r , and we rearrange

the order of aj ’s and assume a1 ≥ · · · ≥ ar ≥ 0. It is clear that ∃ k,

1 ≤ k ≤ r , such that a1 ≥ · · · ≥ ak > 0 and aj = 0 for all j ≥ k + 1 if

k ≤ r − 1. Then, k is called the rank of v .
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This lemma also yields

Proposition

Let f0 : (∆, λds2∆) → (Ω, ds2Ω) be a holomorphic isometric embedding. If
Z0 := f0(∆) ⊂ Ω is not asymptotically totally geodesic at a general point
b ∈ ∂Z0, then there exists by rescaling a holomorphic isometric
embedding f : (∆, λds2∆) → (Ω, ds2Ω) with the image Z := f (∆) that is
not totally geodesic in Ω, such that all holomorphic tangent spaces
Tx(Z ), x ∈ Z, are equivalent under Aut(Ω).

Therefore, our goal is to show that Z is actually totally geodesic, and

thus the original holomorphic isometry f0 must be asymptotically totally

geodesic at general points.
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Total geodesy of local holo. curves on Tube domains

Let Ω be an irr. BSD. In 2002, Mok (Comp. Math. 2002) considered
S ⊂ PTΩ defined as S :=

⋃
x∈Ω Sx , where

Sx := {[η] ∈ PTx(Ω) : η is of rank < rank(Ω)}.
Then, S0 ⊂ PT0(Ω) is of complex codimension 1 ⇐⇒ Ω is of tube type,
i.e., Ω is one of the following

1 D I
m,m, m ≥ 1,

2 D II
n , n ≥ 4 is even,

3 D III
n , n ≥ 3,

4 D IV
n , n ≥ 3,

5 DVI (27-dimensional exceptional domain pertaining to E7).

Proposition

Let Ω be an irr. BSD of tube type and of rank r , Z ⊂ Ω be a local
holomorphic curve with Aut(Ω)-equivalent holomorphic tangent spaces
spanned by holomorphic tangent vectors of rank r . Then, Z ⊂ Ω is
totally geodesic and of diagonal type, i.e. it is equivalent to the image of
the map ∆ → Ω, w 7→ (w , . . . ,w , 0).

9 / 30
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Proof: π : PTΩ → Ω, L → PTΩ tautological line bundle. By [Mok,
Comp. Math. 2002], the divisor line bundle Div(S) over PTΩ defined by
the divisor S ⊂ PTΩ is

Div(S) ∼= L−r � π∗E 2,

where E dual to O(1) on the compact dual Hermitian symmetric space
Xc of Ω. By the Poincaré-Lelong equation

1

2π

√
−1∂∂ log∥s∥2 = rc1(L, ĝ0)− 2c1(π

∗E , π∗h0) + [S],

where ĝ0 and h0 are canonical metrics, s is a holomorphic section of
L−r �π∗E 2 such that the zero divisor of s is S, [S] denotes the current of
integration over S. Now, ∥s∥ only depends on the Aut(Ω)-isomorphism
type of tangent vectors in Tz(Ω), z ∈ Ω, i.e., ∥s∥ is invariant under
Aut(Ω). Consider the tautological lifting Ẑ of Z to PTΩ, i.e.,

Ẑ := {[α] ∈ PTx(Ω) : x ∈ Z , Tx(Z ) = Cα}.

Then, Ẑ ∩ S = ∅.
10 / 30



Moreover, since Z has Aut(Ω)-equivalent holomorphic tangent spaces,
∥s∥ ≡ Constant > 0 on Ẑ , and thus

0 ≡ rc1(L, ĝ0)|Ẑ − 2c1(π
∗E , π∗h0)|Ẑ

so that
0 ≡ rc1(TZ , gΩ|Z )− 2c1(E , h0)|Z ,

which is equivalent to the Gaussian curvature K (x) = − 2
r , and thus the

second fundamental form σ of Z is 0, σ ≡ 0.
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Inserting a totally geodesic complex submanifold Ω′ ⊃ Z

Proposition

Let Ω be an irr. BSD, Z ⊂ Ω be a local holomorphic curve with
Aut(Ω)-equivalent tangent spaces Tz(Z ) = Cηz . Suppose
rank(ηz) =: k < r := rank(Ω). Then, there exists a holomorphic vector
bundle W ⊂ TΩ|Z such that

1 defining the second fundamental form τ : TZ � W → TΩ|Z/W of
W in TΩ|Z by

τx(η � γ) := (∇ηγ)(x) mod Wx

for x ∈ Z, η ∈ Tx(Z ) and γ ∈ Wx , τ is holomorphic, i.e.,
∇β(∇ηγ)(x) ∈ Wx for any (1, 0)-tangent vector β of Z at x.

2 We have τ |TZ�TZ
≡ 0, and indeed τ ≡ 0, i.e., W is parallel on Z.

3 there exists a totally geodesic complex submanifold Ω′ ⊂ Ω such
that Z ⊂ Ω′ and Tz(Ω

′) = Wz for all z ∈ Z.

4 Ω′ is an irreducible BSD and rank(Ω′) = k < rank(Ω).

Construction of W → Obtain Ω′ ⊃ Z via the method of holo. foliations.
12 / 30



Remark: After this proposition, we still need to consider the case where
rank(ηz) = r = rank(Ω), and Ω is not of tube type. If Ω is of tube type,
then we may apply the propositions on pages 9 & 12. Thus, we need to
have a similar result that forces Z ⊂ Ω′ for some totally geodesic
complex submanifold Ω′ ⊂ Ω such that Z ⊂ Ω′, Ω′ is of tube type and
rank(Ω′) = r .

Construction of the vector bundle W . For any z ∈ Ω define the
Hermitian bilinear form on Tz(Ω) � Tz(Ω) by

Qz(α � β, γ � δ) := Rαγδβ(Ω, gΩ).

In the following we simply write the curvature as Rαγδβ = R(α, γ, δ, β).

Note that Qz(α � β, ·) = Rα∗∗β . For any non-zero vector ξ ∈ Tz(Ω), we
define the null space

Nξ := {v ∈ Tz(Ω) : Qz(ξ � v , ·) ≡ 0}.
For any x ∈ Z , we define

Wx := {v ∈ Tx(Ω) : Qx(v ⊗ ζ, ·) ≡ 0 ∀ ζ ∈ Nη},

where η = ηx ∈ Tx(Z ) is a non-zero vector spanning Tx(Z ). It is clear

that Qx(η � ζ, ·) ≡ 0 for all ζ ∈ Nη by definition, hence Tx(Z ) ⊂ Wx .
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Example. When Ω = D I
p,q, 2 ≤ p ≤ q, Ω is of rank p, we may write

η = diagp,q(η1, . . . , ηk , 0)

in the normal form with η1 ≥ · · · ≥ ηk > 0, where 1 ≤ k < p. Then,

Nη =

{[
0 0
0 Z ′

]
∈ M(p, q;C) : Z ′ ∈ M(p − k , q − k;C)

}
Then, Wx is isomorphic to⋂

ζ∈Nη

Nζ =

{[
Z ′′ 0
0 0

]
∈ M(p, q;C) : Z ′′ ∈ M(k , k ;C)

}
∼= T0(D

I
k,k).

If k = p, i.e., η = diagp,q(η1, . . . , ηp), then Nη = 0 and

Wx
∼=

⋂
ζ∈Nη

Nζ = N0 = T0(Ω),

so that Wx = Tx(Ω), which actually holds for any irr. BSD Ω of rank

≥ 2 whenever rank(η) = rank(Ω). If Ω is not of tube type, we couldn’t

apply the proposition on page 9 when η is of rank r = rank(Ω).
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Inserting a totally geodesic complex submanifold Ω′ ⊃ Z

Due to the issue mentioned at the end of the previous example, we will
need the following proposition to deal with the case where ηx is of max.
rank r . (The idea is similar to the previous proposition.)

Proposition

Let Ω be an irr. BSD, and Z ⊂ Ω be a local holomorphic curve with
Aut(Ω)-equivalent tangent spaces Tx(Z ) = Cηx , x ∈ Z. Then, there
exists a holomorphic vector subbundle V ⊂ TΩ|Z such that

1 defining the second fundamental form τ : TZ � V → TΩ|Z/V , τ is
holomorphic.

2 τ ≡ 0, i.e., V is parallel on Z.

3 there exists a totally geodesic complex submanifold Ω′ ⊂ Ω such
that Z ⊂ Ω′, Tx(Ω

′) = Vx for all x ∈ Z,

4 Ω′ is an irreducible BSD of tube type.

For any x ∈ Z , V =
⋃

x∈Z Vx is defined by

Vx = [[Tx(Z ),Tx(Ω)],Tx(Z )] ⊂ Tx(Ω).

We use the Lie algebraic properties of Tz(Ω), z ∈ Ω ∼= G0/K .
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Comparison between the holo. vector bundles V and W

Recall Tx(Z ) = Cηx and ηx is of rank k ≤ r := rank(Ω) ≥ 2, x ∈ Z . If
k < r , then we have Vx = Wx for x ∈ Z , so that we can just identify
V = W , and we can find an irreducible BSD Ω′ of tube type and of rank
k containing Z by the method before.

However, if k = r , then Vx ⊊ Wx = Tx(Ω) for x ∈ Z . Actually, in this
case Vx = Tx(Ω

′) for some totally geodesic complex submanifold Ω′ ⊂ Ω
of the same rank as Ω, and Ω′ is an irreducible BSD of tube type. Thus,
the key point is to deal with the case where k = r and make use of V .
We need some extra computations regarding those assertions on V . But
most arguments in our consideration of W also work here.
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From the previous two propositions, we can always find a totally geodesic
complex submanifold Ω′ ⊂ Ω such that

1 Z ⊂ Ω′,

2 Ω′ is an irreducible BSD of tube type and rank k,

3 Tx(Z ) = Cηx with ηx ∈ Tx(Ω
′) being a rank-k vector.

This allows us to prove that Z ⊂ Ω′ is totally geodesic by using the
proposition on page 9, and thus we prove the asymptotic total geodesy of
the local holomorphic curve µ(U ∩∆) exiting the irreducible BSD Ω.

When Ω is reducible, we can apply similar constructions of a holomorphic
curve Z with Aut(Ω)-equivalent holomorphic tangent spaces, and the
(holomorphic) vector bundles W and V over Z , etc.
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2. Applications and some related known results

One of the consequences of our results is the following.

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let D and Ω be bounded symmetric domains, Φ : Aut0(D) → Aut0(Ω)
be a group homomorphism, and F : D → Ω be a Φ-equivariant
holomorphic map. Then, F (D) ⊂ Ω is a totally geodesic complex
submanifold with respect to the Bergman metric ds2Ω.

Remark: This theorem is due to L. Clozel (2007) in the cases of classical
domains, and is stated in a survey article of N. Mok (2011).

Idea of the proof: As in the study of holo. isometries, the key point is
to deal with the case where D ∼= ∆ is the unit disk by using N. Mok’s
proof of the Hermitian metric rigidity (in general we restrict F to any
minimal disk of D). Now, we consider D ∼= ∆. Write σ for the (1, 0)-part
of second fundamental form of (F (D), ds2Ω|F (D)) ⊂ (Ω, ds2Ω). By the
Φ-equivariance of F , the norm ∥σ∥ is constant. On the other hand, we
have ∥σ(µ(w))∥ → 0 as w → b, w ∈ U ∩∆, where µ is the local
holomorphic curve defined in the theorem before. This forces ∥σ∥ ≡ 0,
and thus F (D) ⊂ Ω is totally geodesic.
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The hyperbolic Ax-Lindemann-Weierstrass conjecture

Another application is related to the following hyperbolic Ax-Lindemann
-Weierstrass conjecture (which is related to the André-Oort conjecture).

Conjecture (The hyperbolic Ax-Lindemann-Weierstrass conjecture)

Let Ω ⋐ CN be a bounded symmetric domain and XΓ := Ω/Γ with the
universal covering map π : Ω → XΓ, where Γ ⊂ Aut0(Ω) is a torsion-free
lattice. If Z ⊂ Ω is an algebraic subset, then the Zariski closure

Y := π(Z )
Zar

of π(Z ) in XΓ is a totally geodesic subset.

Remark: The original conjecture is only for Γ being arithmetic.

It is
known that XΓ = Ω/Γ is a quasi-projective variety even when Γ is not
necessarily arithmetic. An algebraic subset of Ω is V ∩ Ω for some
algebraic subvariety V ⊂ Ω̂, where Ω̂ is the compact dual Hermitian
symmetric space of Ω, which is a projective manifold, and Ω ⊂ Ω̂ can be
identified as an open subset via the Borel embedding.

The above conjecture has been solved by (1) Klingler-Ullmo-Yafaev

(2016) if XΓ is a pure Shimura variety, i.e., Γ is arithmetic, and by (2) N.

Mok (Compos. Math. 2019) if Ω ∼= BN (Γ is not necessarily arithmetic).

The general case is still open.
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On the other hand, Ziyang Gao (2017) also extended this result, which is
called the Ax-Lindemann principle, to any mixed Shimura variety [See a
survey article of Klingler-Ullmo-Yafaev (2018)].

By the Margulis Arithmeticity Theorem, Γ is arithmetic if rank(Ω) ≥ 2
and Ω/Γ is an irreducible quotient (i.e., Γ is irreducible).

In particular, the hyperbolic Ax-Lindemann-Weierstrass conjecture is

solved if Γ is irreducible, which holds true if Ω is irreducible. Note that in

general there could be non-arithmetic quotients if Ω has some irreducible

factor ∼= Bn (e.g. for n = 2 or 3).
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Main Theorem

Theorem (C.-Mok, J. Diff. Geom. 2022; Main Theorem)

Let Ω ⋐ CN be a BSD, and Z ⊂ Ω be an irr. algebraic subset. Suppose ∃ a
torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such that Γ̌ stabilizes Z and
Y̌ := Z/Γ̌ is compact (without boundary). Then, Z ⊂ Ω is totally geodesic.

Problem 1: Generalize this theorem to the case where Y̌ is quasi-projective
and noncompact.
As a consequence, we have the following theorem that generalizes the

cocompact case of Ullmo-Yafaev (2011) which characterizes totally geodesic
subsets of Hermitian locally symmetric spaces of finite volume as the unique
bi-algebraic subvarieties (thus yielding a reduction of the hyperbolic
Ax-Lindemann-Weierstrass conjecture).

Theorem (C.-Mok, J. Diff. Geom. 2022)

Let Ω ⋐ CN be a BSD, and Γ ⊂ Aut(Ω) be a not necessarily arithmetic
torsion-free cocompact lattice. Write XΓ := Ω/Γ, π : Ω → XΓ for the
uniformization map. Let Y ⊂ XΓ be an irr. subvariety, and Z ⊂ Ω be an irr.
component of π−1(Y ). Suppose Z ⊂ Ω is an algebraic subset. Then, Z ⊂ Ω is
a totally geodesic complex submanifold.

This theorem could be generalized to the case where Γ is a lattice (not
necessarily cocompact) provided that Problem 1 is solved.
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Idea of the proof of the main theorem

We first assume that Y̌ = Z/Γ̌ is quasi-projective instead of compact.
Let H0 be the identity component of Stab(Z ) := {g ∈ G0 : g(Z ) = Z},
where G0 := Aut0(Ω). We show that H0 ⊂ G0 is real algebraic group of
positive dimension. Actually, since Stab(Z ) is a real algebraic group and
Γ̌ ⊂ Stab(Z ), we only need to show that Γ̌ is an infinite group by the
maximum principle.

Moreover, Γ̂ := H0 ∩ Γ̌ ⊂ Γ̌ is a subgroup of finite index. In particular, we
have a finite unramified covering map Z/Γ̂ → Z/Γ̌. Hence, if Z/Γ̌ is
compact, then so is Z/Γ̂. In the proof, we will consider the compact
complex manifold Z/Γ̂ instead of Z/Γ̌.

If Z/Γ̌ is quasi-projective, then so is Z/Γ̂ by Riemann’s existence theorem
and the fact that Γ̌ acts on Z without fixed points (cf. Remark 1.3 on
p. 2082 of [R. Friedman & R. Laza, Duke Math. J. 2013]).
R. Friedman & R. Laza have also pointed out that a finite ramified cover
of a quasiprojective variety need not be quasiprojective in general.

We have the complexification H ⊂ G := GC
0 of H0, and H is a complex

algebraic group. Here, Xc = G/P is the compact dual Hermitian

symmetric space of Ω and we can identify Ω ⊂ Xc as an open subset via

the Borel embedding, where P ⊂ G is some parabolic subgroup.
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maximum principle.

Moreover, Γ̂ := H0 ∩ Γ̌ ⊂ Γ̌ is a subgroup of finite index. In particular, we
have a finite unramified covering map Z/Γ̂ → Z/Γ̌. Hence, if Z/Γ̌ is
compact, then so is Z/Γ̂. In the proof, we will consider the compact
complex manifold Z/Γ̂ instead of Z/Γ̌.

If Z/Γ̌ is quasi-projective, then so is Z/Γ̂ by Riemann’s existence theorem
and the fact that Γ̌ acts on Z without fixed points (cf. Remark 1.3 on
p. 2082 of [R. Friedman & R. Laza, Duke Math. J. 2013]).
R. Friedman & R. Laza have also pointed out that a finite ramified cover
of a quasiprojective variety need not be quasiprojective in general.

We have the complexification H ⊂ G := GC
0 of H0, and H is a complex

algebraic group. Here, Xc = G/P is the compact dual Hermitian

symmetric space of Ω and we can identify Ω ⊂ Xc as an open subset via

the Borel embedding, where P ⊂ G is some parabolic subgroup. 22 / 30



We have the following proposition by using the maximum principle.

Proposition

For x ∈ Z, Z ⊂ Hx ∩ Ω is an irreducible component. (Recall Ω ⋐ CN .)

Outline of the proof: By definition, Z ⊂ Ẑ ∩ Ω is an irreducible

component for some irreducible projective subvariety Ẑ ⊂ Xc . If

Hx ∩ Z ⊊ Z , then we can find a Zariski closed subset E ⊊ Z (i.e., E is a

finite union of irreducible components of Ê ∩ Ω for some projective

subvariety Ê ⊂ Xc) such that Hx ∩ Z ⊂ E , and a polynomial p(z) in

z ∈ CN such that p|Ê∩CN ≡ 0 and p|Ẑ∩CN ̸≡ 0. Define Φ : Ω → R by

Φ(z) := sup{|p(γ(z))| : γ ∈ Γ̌}. Note that |p(γ(z))| ≤ supΩ |p| < +∞.

This will give a nonconstant bounded plurisubharmonic function on

Y̌ = Z/Γ̌, a plain contradiction by the maximum principle and the

Riemann extension theorem. Since H acts algebraically on Xc , we have

Hx ∩ Z = Z . If Hx ∩ Z ⊊ Z , then letting y ∈ Z ∖ Hx , we still get

Hy ∩ Z = Z as before, but then this contradicts with the fact that Hx

and Hy are disjoint orbits. Hence, Hx ∩ Z = Z for any x ∈ Z .
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The previous proposition implies that Z ⊂ Ω is smooth by the
smoothness of Hx and that Ω ⊂ Xc is an open subset. We also have the
(real) orbit H0x ⊂ Z ⊂ Hx . Since Y̌ = Z/Γ̌ (equipped with the Kähler
metric gY̌ induced from ds2Ω|Z ) is a compact Kähler manifold with ample
canonical line bundle KY̌ , we may make use of a consequence of Nadel’s
semisimplicity theorem [Nadel, Ann. of Math. 1990] to obtain that H0 is a
semisimple Lie group of the noncompact type (i.e., without compact
factors).

Theorem (Nadel’s semisimplicity theorem , Ann. of Math. 132 (1990))

Let X be a compact Kähler manifold with ample canonical line bundle
KX , and denote by π : X̃ → X the uniformization map. Then, Aut0(X̃ )
is a semisimple Lie group of the noncompact type.

Now, H0 is a semisimple Lie group of the noncompact type. To prove the

main theorem, we will show that Z = H0x is Riemannian symmetric of

the semisimple and noncompact type by showing that

dimR(H0x) = dimR(Z ) and (H0)x ⊂ H0 is the maximal compact

subgroup. In particular, we see that Z ⊂ Ω is a totally geodesic complex

submanifold, and the main theorem will follow.
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Outline of the proof: We have H0x ∼= H0/(H0)x , where (H0)x :=
{h ∈ H0 : h(x) = x}. Note that (H0)x ⊂ {g ∈ G0 : g(x) = x} =: Kx and
Kx ⊂ G0 is known to be a maximal compact subgroup. Now, there is a
maximal compact subgroup L ⊂ H0 such that (H0)x ⊂ L, and H0/L ∼= Rn

is a diffeomorphism for some n.

Consider the K (Γ̂, 1)’s (i.e.,
Eilenberg-MacLane spaces X with π1(X ) ∼= Γ̂ and πk(X ) is trivial for
k ̸= 1)

g : SΓ̂ := Γ̂\H0/L ↪→ Γ̂\Ω ∼= Ω/Γ̂ =: XΓ̂

and the inclusion map ι : Ŷ := Z/Γ̂ ↪→ XΓ̂. We have the finite covering

Ŷ → Y̌ and Y̌ is compact (without boundary), thus Ŷ is compact. Now,
g∗ : π1(SΓ̂) → π1(XΓ̂) is a group isomorphism, and ι∗ : π1(Ŷ ) → π1(XΓ̂)
is a group homomorphism. Consider the group homomorphism

(g∗)
−1 ◦ ι∗ : π1(Ŷ ) → π1(SΓ̂).

Then, there is a continuous map f : Ŷ → SΓ̂ such that

f∗ = (g∗)
−1 ◦ ι∗

by Whitehead’s theorem. Letting g ◦ f : Ŷ → XΓ̂, we have

(g ◦ f )∗ = g∗ ◦ f∗ = ι∗.
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−1 ◦ ι∗ : π1(Ŷ ) → π1(SΓ̂).

Then, there is a continuous map f : Ŷ → SΓ̂ such that
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By Whitehead’s theorem and Whitney’s approximation theorem, we may
choose f to be smooth and we have the homotopic smooth maps

g ◦ f : Ŷ → XΓ̂, ι : Ŷ ↪→ XΓ̂.

These two smooth maps induce the same pullback maps on the de Rham
cohomology groups

(g ◦ f )∗ = ι∗ : Hp
dR(XΓ̂) → Hp

dR(Ŷ )

for all p.

Write ω̂ for the Kähler form of XΓ̂ = Ω/Γ̂ with the Kähler

metric gXΓ̂
induced from ds2Ω. Write s := dimC(Ŷ ) = dimC(Z ). Then,

ι∗
ω̂s

s!
= (g ◦ f )∗ ω̂

s

s!
+ dη0

and ι∗ ω̂s

s! is the volume form of the compact Kähler manifold (Ŷ , gXΓ̂
|Ŷ ).

If dimR(SΓ̂) < 2s, then g∗ω̂s = 0 so that

ι∗
ω̂s

s!
= dη0

on Ŷ , and we would have Vol(Ŷ ) = 0 by Stokes’ Theorem, a plain

contradiction. Therefore, dimR(SΓ̂) ≥ 2s.
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These two smooth maps induce the same pullback maps on the de Rham
cohomology groups

(g ◦ f )∗ = ι∗ : Hp
dR(XΓ̂) → Hp

dR(Ŷ )
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We have

dimR(H0x) ≥ dimR(H0/L) = dimR(SΓ̂) ≥ 2s = dimR(Z )

Thus, dimR(H0x) = dimR(Z ) so that Z = H0x ∼= H0/L is Riemannian
symmetric of the semisimple and noncompact type. Since Z is a complex
manifold, Z is indeed a Hermitian symmetric space of noncompact type.
By the theorem on page 18 about equivariant holomorphic maps, we
obtain the total geodesy of Z in Ω.

Remark: In this proof, one may consider the case where Y̌ = Z/Γ̌ is

only assumed quasi-projective so that Ŷ = Z/Γ̂ is also quasi-projective.

Then, we still obtain ι∗ ω̂s

s! = dη0. However, we could not apply Stokes’

Theorem in the in order to do the dimension estimates as in the case

where Y̌ (resp. Ŷ ) is compact.

Another issue is that if Y̌ = Z/Γ̌ is

quasi-projective and noncompact, then we could not apply Nadel’s

semisimplicity theorem to show that H0 is semisimple. However, there

could be other ways to prove the semisimplicity of H0.
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Thank you!
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